
1(January 2002) 1(January 2002)

NAME
angle − gradient direction of edges

SYNOPSIS
theta = angle(DeltaX, DeltaY)

PARAMETERS
DeltaX and Delta Y

M x N intensity images, resulting from convolution with gradient masks in two orthogonal
directions

theta Intensity image. Each pixel has the angle of the approximated gradient, in radians. Where
DeltaX is zero, theta is taken as PI/2.

DESCRIPTION
The function angle obtains the gradient direction "theta" from images yielded from convolution
with gradient masks in direction x and y (Deltax and Deltay, respectively).

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = imread(’disks.bmp’);
xbasc()
imshow(Img,2);
Dx = edge(Img,thresh=-1, direction=’horizontal’);
Dy = edge(Img,thresh=-1, direction=’vertical’);
t = angle(Dx,Dy);
imshow(t,[])

chdir(initial dir);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
edge

SIP Toolbox 1

BWBORDER(1) BWBORDER(1)

NAME
bwborder − border detection for binary images

SYNOPSIS
B = bwborder(Img)
B = bwborder(Img, 4)
B = bwborder(Img, 8)

PARAMETERS
Img binary array, 1 for object and 0 for background (double precision)

B binary(0-1) array (double), same size as Img

DESCRIPTION
Extracts contours from binary images, by detecting which pixel valued 1 has at least one neighbor
valued 0. The second argument is 4 or 8 depending if the detection is to be made in 4- or 8-neigh-
borhood. The final border will be 8-connected if 4-neighbors are used, and 4-connected if 8-neigh-
bors are used.

bwborder(Img) equals bwborder(Img, 8).

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = imread(’bin2.pbm’)
xbasc()
imshow(Img,2);
B = bwborder(Img)
imshow(B,2);

chdir(initial dir);

BUGS AND SHORTCOMINGS
Images are stored in double precision matrices. Hopefully, the next release will make usage of inte-
ger types.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
edge, follow, im2bw

SIP Toolbox January 2002 1

BWDIST(1) BWDIST(1)

NAME
bwdist − distance transforms

SYNOPSIS
dt = bwdist(img [,algorithm])

PARAMETERS
img Binary image containing one or more binary shapes. (foreground == 1, background ==

0). The shapes may have any form.

algorithm (see references)
Listed below are the various algorithms available, together with the shortest string form
accepted (for speed of use). This argument is CASE-INSENSITIVE. Some of the algo-
rithms are faster than others, but this depends heavily on the size and content of the
input.

´euclidean´ or ´euclid´: the default fast exact euclidean algorithm. Currently, it is the
same as the ´cuisenaire pmn´ bellow. (DEFAULT)

´cuisenaire pmn´: very fast exact euclidean algorithm. It is based on propagation of mul-
tiple neighborhoods to build up an exact EDT.

´cuisenaire pmon´: a variation of the latter that uses multiple oriented neighborhoods. It
seems to be slightly slower, in general, but can be faster for some cases.

´cuisenaire psn4´: a variation of the latter that uses only 4-neighborhood. This is faster
but less precise.

´cuisenaire psn8´: a variation of the latter that uses diagonal neighborhood after 4-neigh-
borhood to improve the precision. This is faster than the full ´pmn´ algorithm, but less
precise. It is a little slower than psn4 but considerably more precise.

´maurer´ or ´mau´ : very fast (and recent) exact euclidean algorithm, based on some
dimensionality properties of Voronoi diagrams. Seems to be slightly slower than ´cuise-
naire pmn´, but can be faster for some cases.

´lotufo-zampirolli´ or ´lotufo-z´: very fast exact euclidean algorithm. Seems to be slightly
slower than maurer and cuisenaire, in general, but can be faster for some cases.

´IFT 8´ or ´IFT´: a fast algorithm using the euclidean metric. For large and thick shapes,
there may be a few small errors, which are dispensable for most practical applications.

´IFT 4´: the same algorithm but with 4-neighborhood propagation. This means that this
method is about 2x faster but less precise.

´exact dilations´ or ´exact dil´: will perform an exact euclidean algorithm that is slow for
medium shapes, but it is always exact and reasonably fast for thin shapes.

dt The distance transform of the image. When using the euclidean metric, it has the squared
euclidean distances of any point of the image to the boundary of the object.

DESCRIPTION
Function bwdist computes the distance transform. For each foreground pixel (i.e. value ´1´) in
the input image, the distance transform assigns a value that is the smallest distance between that
pixel and the outer boundary of the object.

SIP Toolbox AUGUST 2003 1

BWDIST(1) BWDIST(1)

Many different methods are provided for comparison purposes. If you are going to use bwdist
extensively, you could test the algorithms to find the best one for your particular type of image.

EXAMPLE
xset(’auto clear’, ’on’);

// First, a simple example to illustrate the concept
A = zeros(15,10);
A(4:12,3:7)=1;
A(4:5,3:4)=0

D = bwdist(A)
D = sqrt(D)
// Note how the values in D were calculated.
// For each pixel p such that A(p)=1, D(p) is the minimum euclidean
// distance of p and the 0-pixels (background).

// -----------------------------------
// Now to a more interesting example
// -----------------------------------

A = gray imread(SIPDIR + ’images/escher.png’);
imshow(A,2);

D = bwdist(A); // method==’cuisenaire pmn’
imshow(log(1+D),[]); // normalizes image to enhance visualization

D = bwdist(A,’exact dilations’);
imshow(log(1+D),[]);

// To obtain an external EDT, simply invert the shape:
B = 1-A;
D = bwdist(B,’maurer’);
imshow(log(1+D),[]);

// To obtain an external+internal EDT, simply compute
// the binary border of the shape and pass its negative
// to bwdist:
A = bwborder(A);
A = 1-A;
D = bwdist(A,’lotufo-zampirolli’);
imshow(log(1+D),[]);

// ---------------------------------
// Other forms to visualize the DT
// ---------------------------------

// Wrapping (note the wavefronts of iso-distance)
imshow(modulo(sqrt(D),10),[])

// Usual:
D = bwdist(A);

SIP Toolbox AUGUST 2003 2

BWDIST(1) BWDIST(1)

D = normal(sqrt(D),1000,1);
imshow(D,hotcolormap(1000));

// There is also of DT application in the example for the "watershed"
// function.

xset(’auto clear’, ’off’);

REFERENCES
´Cuisenaire´:
Cuisenaire, O and Macq, B, "Fast Euclidean Distance Transformation by Propagation Using Mul-
tiple Neighborhoods", Computer Vision and Image Understanding, no. 2, vol 76, 163--172, 76,
1999.

Chapter 3 of "Distance transformations: fast algorithms and applications to medical image pro-
cessing", Olivier Cuisenaire’s Ph.D. Thesis, October 1999, Université catholique de Louvain, Bel-
gium.

´Maurer´:
Maurer, C.R. and R. Qi and V. Raghavan, "A Linear Time Algorithm for Computing the
Euclidean Distance Transform in Arbitrary Dimensions", IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 25, no. 2, pp. 265-270, february 2003.

´IFT´:
"Multiscale Skeletons by Image Foresting Transform and its Application to Neuromorphometry",
A.X. Falcao, L. da F. Costa, B.S. da Cunha, Pattern Recognition, 2002.

´Lotufo-Zampirolli´:
R. Lotufo and F. Zampirolli, Fastmultidimensional parallel euclidean distance transform based on
mathematical morphology, in T. Wu and D. Borges, editors, Proccedings of SIBGRAPI 2001, XIV
Brazilian Symposium on Computer Graphics and Image Processing, pages 100-105. IEEE Com-
puter Society, 2001.

´Exact Dilations´:
"Multiresolution shape representation without border shifting", L. da F. Costa, and L. F. Estrozi,
Electronics Letters, no. 21, vol. 35, pp. 1829-1830, 1999.

"Shape Analysis and Classification", L. da F. Costa and R.M. Cesar Jr., CRC Press.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
skel, thin

SIP Toolbox AUGUST 2003 3

BWLABEL(1) BWLABEL(1)

NAME
bwlabel − connected component labeling

SYNOPSIS
[L, n] = bwlabel(img [, nhood])

PARAMETERS
img A binary image, where 0 stands for background.

nhood
A scalar. The connectivity to consider in the algorithm. May be 4 or 8. Defaults to 8.

L A matrix of the same size as img, with the pixels of each connected object having the
same number. The numbers vary from 1 to N, where N is the number of connected
objects. The background is numbered 0.

n The number of connected components. Equals to maxi(L).

DESCRIPTION
Function bwlabel numbers all the objects in a binary image. One common application is to filter
out objects that have less than a certain ammount of pixels. See the examples.

You can use the Scilab find function in conjunction with bwlabel to return vectors of indices for
the pixels that make up a specific object. For example, to return the coordinates for the pixels in
object 3,

[r,c] = find(bwlabel(BW)==3)

EXAMPLE 1
Img =[0 0 0 0 0 1 1

0 1 1 0 0 1 1
0 1 1 0 0 1 1
0 0 0 1 0 1 1
0 0 0 1 0 1 1
0 0 0 1 0 1 1
0 0 1 1 0 1 1
0 0 0 0 0 1 1];

L = bwlabel(Img,4)

// Objects 2 and 3 are connected if 8-connectivity is used:

L = bwlabel(Img) // default: 8-connectivity

[r,c] = find(L==2);

rc = [r’ c’] // coordinates of object 2!

EXAMPLE 2
xset(’auto clear’, ’on’);

a = gray imread(SIPDIR + ’images/disks.bmp’);

SIP Toolbox 2003 1

BWLABEL(1) BWLABEL(1)

// Add some noise
//
a = imnoise(a,’salt & pepper’);
a = 1-a;
imshow(a,2); // convention: objects are white(1)

// Label every connected component with a unique number.
//
[L, n] = bwlabel(a);

// Shows each component with a different color
//
imshow(L+1, rand(n+1,3));

// Get one specific region (probably a single noise point)
reg = (L == 300);
imshow(reg*1, 2);

// Eliminate regions smaller than 100 pixels (noise)
// and those larger than 1000 pixels (cluttered disks)
for i=1:n

f = find(L==i); // linear coordinates of i-th region
reg size = size(f,’*’);
if reg size < 100 | reg size > 1000

L(f) = 0; // merge small regions with the background
end

end

imshow(L+1, rand(n+1,3)); // note how the small regions are gone

// Just as a side-activity, let’s fill the unwanted holes:

bw = 1*(L>0); // binarize the image
imshow(bw,2)
bw = dilate(bw);
bw = erode(bw);
imshow(bw,2); // every hole is now filled

xset(’auto clear’, ’off’);

REFERENCES
We use a simple stack-based flooding implementation written in C, but there exist many faster
algorithms.

The flood/fill region growing process may be found in most books of imaging science. For
instance:
"Shape Analysis and Classification", L. da F. Costa and R. M. Cesar Jr., CRC Press, pp. 335-347.

Example of fast algorithm (not implemented):
Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume I, Addison-Wes-
ley, 1992, pp. 28-48.

SIP Toolbox 2003 2

BWLABEL(1) BWLABEL(1)

REMARKS
Images cannot have more than 2ˆ32 pixels. For example, we do not accept images larger than
65535x65535

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
bwborder, erode, dilate, watershed

SIP Toolbox 2003 3

CURVATURE2D(1) CURVATURE2D(1)

NAME
curvature2d − curvature of a surface or image

SYNOPSIS
Output = curvature2d(Input)

Input 2D matrix (e.g. intensity image)

Output
2D matrix, the estimated curvature function

DESCRIPTION
"curvature2d" calculates the curvature of an intensity image or surface represented as a 2D
matrix. It currently uses finite differences.

AUTHORS
Leandro Estrozi <lfestrozi@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
curvature, minmax, fftderiv

SIP Toolbox FEBRUARY 2003 1

CURVATURE(1) CURVATURE(1)

NAME
curvature − curvature of a contour

SYNOPSIS
K = curvature(BW [,sigma, delta])
K = curvature(x,y [,sigma, delta])

PARAMETERS
K vector containing the curvature of the contour at each point.

BW Binary image containing only one object (0 for background, 1 for object).

x and y
vectors, storing the parametrized contour.

sigma standard deviation of the gaussian function used to smooth the contour before computing
the curvature. Defaults to 5.

delta a double number, the time between samples (delta t), and defaults to 1.

DESCRIPTION
Function curvature calculates the curvature at each point of a binary contour, using FFT and a
formula from differential geometry.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = imread(’star.bmp’);
xbasc()
imshow(Img,2);
k = curvature(Img,13); // 13 sigma (shape is smoothed so curvature exists)
xbasc()
plot(k)
//
// observe there are six curvature peaks,
// corresponding to the six peaks of the star. There
// is one peak half at 0 and half at about 450.
// That’s because the parametrization of
// the contour started at the highest peak and
// terminated there. Note also that the shape had to
// be considerably smoothed so the curvature doesn’t
// blow up at the very sharp peaks of the star.
//

chdir(initial dir);

REFERENCES
"Shape Analysis and Classification", L. da F. Costa and R. M. Cesar Jr., CRC Press, pp. 335-347.

"Differential Geometry of Curves and Surfaces", Manfredo P. do Carmo, Prentice Hall, 1976.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
follow, gsm, fftderiv

SIP Toolbox January 2002 1

DILATE(1) DILATE(1)

NAME
dilate − morphological dilation of binary images

SYNOPSIS
E = dilate(Img, [SE, center])

PARAMETERS
Img M x N Binary image to be dilated. (0 for background, 1 for object)

E M x N Binary dilated image.

SE Arbitrary structuring element represented as a binary array. Defaults to:
[0 1 0
1 1 1
0 1 0]

center origin of structuring element. Shold be within image dimensions. Defaults to the center
of the SE array.

DESCRIPTION
Function dilate performs morphological dilation of a binary image Img using SE as the structur-
ing element.

EXAMPLE
Img = imread(SIPDIR+’images/tru.jpg’);
Img = 1-im2bw(Img, 0.3);
Img = thin(Img);
xbasc()
imshow(Img ,2);

e = dilate(Img);
xbasc()
imshow(e ,2);

SE = eye(10,10);
e = dilate(Img, SE, [1,1]);
xbasc()
imshow(e ,2);

REMARKS
The algorithm is fully functional, but there exists many better ones. The present implementation
will certainly change, but the interface shall remain unaltered.

REFERENCE
"Morphological Algorithms", Luc Vincent, in "Mathematical Morphology in Image Processing",
Ed. Marcel Dekker, 1993.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
erode, edilate, bwdist, watershed (example)

SIP Toolbox January 2002 1

DRAWLINE(1) DRAWLINE(1)

NAME
drawline − draws line in a binary image

SYNOPSIS
imo = drawline(img, points)

PARAMETERS
img Intensity image

points n rows x 2 columns vector of n 2D (row,col) coordinates:
[row1 col1; row2 col2; ... ; rowN colN]

DESCRIPTION
Function drawline is used to draw a digital straight line or polyline into an image.

EXAMPLE
I = zeros(100,100);
J = drawline(I, [1 1; 20 50; 100 100]);
xbasc();
imshow(J,2);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
mogrify (its -draw parameter provides many shapes with antialiasing)

SIP Toolbox NOVEMBER 2002 1

EDGE(1) EDGE(1)

NAME
edge − edge detection

SYNOPSIS
E = edge(Img)
E = edge(Img, named args)
E = edge(Img, method)
E = edge(Img, method, thresh)
E = edge(Img, method, thresh, direction)
E = edge(Img, method, thresh, direction, sigma)

PARAMETERS
Img M x N Grayscale (intensity) image in any range.

method
may be ’sobel’(default), ’prewitt’ or ’fftderiv’. Other methods will appear in the
future.

thresh
sets the threshold level, from 0 to 1. Defaults to 0.5. If negative, then the output image,
E, will have the un-thresholded gradient image.

direction
may be ’horizontal’, ’vertical’ or ’both’(default). This determines the direction to com-
pute the image gradient.

sigma Controls the ammount of high-frequency attenuation in some methods (only the ’fftderiv’
method uses this parameter). This can be used to obtain different levels of detail and to
filter out high-frequency noise. Defaults to 1.

<named args>
this is a sequence of statements key1=value1, key2=value2,... where key1, key2,... can be
any of the optional arguments above, in any order.

DESCRIPTION
The function edge performs edge detection on a grayscale intensity image. The user may set the
method, the threshold level and the direction of the edge detection.

edge(Img) Detects edges in Img, using the sobel gradient estimator, 0.5 threshold level and in
both horizontal and vertical directions.

The other parameters are optional and non-positional. That is, they may be passed to the func-
tion by their name. The following example illustrates this.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = imread(’tru.jpg’);
Img = im2gray(Img);
xbasc()
imshow(Img);

e = edge(Img); // sobel, thresh = 0.5
xbasc()
imshow(e,2)

e = edge(Img,’prewitt’); // thresh = 0.5
xbasc()
imshow(e,2)

SIP Toolbox January 2002 1

EDGE(1) EDGE(1)

e = edge(Img,’fftderiv’, 0.4); // FFT gradient method; 0.4 threshold
xbasc()
imshow(e,[])

// It is useful to thin the edges, eliminating redundant pixels:
e = thin(e);
xbasc()
imshow(e,[])

e = edge(Img,’fftderiv’,sigma=3,thresh=-1); // thicker edges, no threshold
xbasc()
imshow(e,[])

e = edge(Img,thresh=-1);
xbasc()
imshow(e,[])

chdir(initial dir);

REMARKS
In the future, more sophisticated algorithms like Canny and Marr-Hildreth will be available, while
maintaining the same interface.

REFERENCES
"Shape Analysis and Classification", L. da F. Costa and R. M. Cesar Jr., CRC Press, section 3.3.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
bwborder, mogrify, im2gray, imconv, mkfilter

SIP Toolbox January 2002 2

EDILATE(1) EDILATE(1)

NAME
edilate − euclidean morphological dilation of binary images

SYNOPSIS
Dil = edilate(Img, [radius, form])

PARAMETERS
Img M x N Binary image to be dilated. (0 for background, 1 for object)

radius - of circular euclidean structuring element to be used. Defaults to 5.

form determines the size of Dil. It assumes be one of the following values:
’same’

Dil has the same size as the original image, M x N. The image is assumed to be
0 outside its bounds.

’full’ Dil contains the full dilation, (M+2*radius-1) x (N+2*radius-1). The image is
assumed to be 0 outside its bounds.

DESCRIPTION
Function edilate performs exact euclidean dilation of a binary image Img using a circle as the
structuring element. It is implemented in C to be fast.

EXAMPLE
Img = gray imread(SIPDIR+’images/tru.jpg’);
Img = 1-im2bw(Img, 0.3);
xbasc()
imshow(Img,2);
e = edilate(Img,7);
xbasc()
imshow(e,2);

REFERENCES
"Shape Analysis and Classification", L. da F. Costa and R. M. Cesar Jr., CRC Press.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
dilate, erode, bwdist, thin, skel

SIP Toolbox MARCH 2003 1

ERODE(1) ERODE(1)

NAME
erode − morphological erosion of binary images

SYNOPSIS
E = erode(Img, [SE, center])

PARAMETERS
Img M x N Binary image to be eroded. (0 for background, 1 for object)

E M x N Binary eroded image.

SE Arbitrary structuring element represented as a binary array. Defaults to:
[0 1 0
1 1 1
0 1 0]

center origin of structuring element. Shold be within image dimensions. Defaults to the center
of the SE array.

DESCRIPTION
Function erode performs morphological erosion of a binary image Img using SE as the structuring
element.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = gray imread(’disks2.bmp’);
imshow(Img,2);
Img = 1-Img;
SE = ones(10,10);
e = erode(Img, SE);
xbasc()
imshow(e ,2);

chdir(initial dir);

REMARKS
The algorithm is fully functional, but there exists many better ones. The present implementation
will certainly change, but the interface shall remain unaltered.

REFERENCE
"Morphological Algorithms", Luc Vincent, in "Mathematical Morphology in Image Processing",
Ed. Marcel Dekker, 1993.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
dilate, edilate, bwdist

SIP Toolbox January 2002 1

FFTDERIV(1) FFTDERIV(1)

NAME
fftderiv − derivative of a vector using FFT

SYNOPSIS
[Dy, DY] = fftderiv(y, [n , sigma, delta, in, out])
[Dy, DY] = fftderiv(y, <named args>)

INPUT PARAMETERS
y vector containing a periodic window of a function to be differentiated.

n the order of the derivative. It is 1 for 1st derivative, 2 for 2nd derivative, and so on.

sigma the standard deviation of the gaussian kernel used to smooth the input. If sigma is zero,
fftderiv will not smooth the input. (Defaults to 5)

delta a double number. If the input is in the time domain, this is the time between samples
(delta t), and defaults to 1. If the input is in the frequency domain, this is the frequency
increment between samples (delta f), and defaults to 1/N, where N is the number of sam-
ples.

in indicates if the input, x, is a function of time (no FFT has been applied) or frequency
(FFT has already been applied). Can be ’time’ or ’frequency’. (Defaults to ’time’)

out indicates if the output, xsm, is a function of time (inverse FFT will be applied) or fre-
quency (inverse FFT will not be applied). Can be ’time’ or ’frequency’. (Defaults to
’time’)

<named args>
This is a sequence of statements key1=value1, key2=value2,... where key1, key2,... can be
any of the optional arguments above, in any order.

OUTPUT PARAMETERS
Dy the derivative vector in "time" or "frequency" domain.

FDy the derivative vector in "frequency" domain.

DESCRIPTION
Function fftderiv performs the n-th derivative of a periodic function, stored in a vector, using
FFT. The optional arguments in and out enables the user to reuse previously done FFTs. Here
are some possible uses of gsm:

Dy = fftderiv(y)
n defaults to 1, sigma defaults to 5, in and out both defaults to ’time’.

Dy = fftderiv(y,2,3)
n equals 2, sigma equals 3, in and out both defaults to ’time’.

Dy = fftderiv(y,sigma=3, in=’frequency’,out=’frequency’)
n dafaults to 1, y in frequency domain (fft has already been done). Dy in frequency
domain (inverse fft is NOT done by gsm)

In all above examples, FDy is in the frequency domain. It is the second output parameter, and
thus it was discarded in the above examples.

EXAMPLE
step = 2*%pi/100;
y = sin(step:step:2*%pi); // from 2pi/100 to 2pi
xbasc()
plot(y);
// 1st derivative, a sigma of 3 steps to the left and to the right
d = fftderiv(y,1,3*step,step);
xbasc()
plot(d) // a cosine period

SIP Toolbox March 2002 1

FFTDERIV(1) FFTDERIV(1)

REMARKS
For a derivative without noises, the vector y must be an exact period of a continuous periodic
function, i.e., its repetition has to be continuous. A direct way for checking this is to plot z = [y y]
and look close in the middle. If there is not a minimal discontinuity, then fftderiv will certainly
work without need for smoothing.

y should be smoothed before using fftderiv so the derivative is less sensitive to discontinuities and
aliasing. For an estimation of the sigma parameter, please refer to the references below.

REFERENCES
"Shape Analysis and Classification", L. da F. Costa and R. M Cesar Jr., CRC Press, pp. 335-347.

"1D and 2D Fourier-based approaches to numeric curvature estimation and their comparative per-
formance assessment", L. F. Estrozi, L. G. R. Filho, A. G. Campos and L. da F. Costa, Digital
Signal Processing, 2002, accepted paper.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
follow, gsm, fftshift, curvature

SIP Toolbox March 2002 2

FOLLOW(1) FOLLOW(1)

NAME
follow − a contour follower

SYNOPSIS
[x,y] = follow(Img)
[x,y] = follow(Img, 4)
[x,y] = follow(Img, 8)

PARAMETERS
Img binary array, 1 for object and 0 for background (double precision)

x and y
vectors, storing the parametrized contour.

DESCRIPTION
Function follow extracts parametric contours of binary objects. This is useful for further extract-
ing object features such as curvature and bending energy.

It is assumed that Img has only one object.

x and y both store the parametrized contour. That is, (x(i),y(i)) is a point of the contour, where
the coordinate system is assumed as starting from bottom-left corner (0,0) to uper-right corner of
the image. To get the (row,col) matrix coordinates, use the transformation below:

row = size(Img,’r’) - y
col = x+1

The second argument is an optional parameter, being 4 or 8 depending if the border following is
to be made in 4- or 8-neighborhood sequence, yielding a 4- or 8-connected contour.

follow(Img) equals follow(Img, 8).

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = imread(’star.bmp’);
xset(’window’,0)
xbasc()
imshow(Img,2);
[x,y] = follow(Img);
xset(’window’,1)
xbasc()
plot2d(1:size(x,’*’),x,2);
plot2d(1:size(y,’*’),y,1);

chdir(initial dir);

REFERENCE
"Shape Analysis and Classification", L. da F. Costa and R. M Cesar Jr., CRC Press, pp. 335-347.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
unfollow, gsm, bwborder, curvature

SIP Toolbox January 2002 1

FRACTAL(1) FRACTAL(1)

NAME
fractal − multiscale fractal dimension curve

DESCRIPTION
"fractal" routine is under development. It’s sourcecode has some documentation.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
other toolboxes

SIP Toolbox NOVEMBER 2002 1

GRAY IMREAD(1) GRAY IMREAD(1)

NAME
gray imread − read any image as grayscale

SYNOPSIS
im = gray imread(filename)

PARAMETERS
Img 2D array representing pixel intensities

DESCRIPTION
This is a simple utility routine to read any image as grayscale. If the image is truecolor or
pseudo-color, it is converted using im2gray

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = gray imread(’ararauna.png’);
xbasc()
imshow(Img,[]);

chdir(initial dir);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
imshow, im2gray, im2bw

SIP Toolbox MAY 2003 1

GSM2D(1) GSM2D(1)

NAME
gsm2d − 2D gaussian smoothing

SYNOPSIS
MG = gsm(M [,sigma]);

PARAMETERS
M the matrix (intensity image) to be smoothed

sigma the standard deviation of the gaussian kernel. Defaults to 5.

MG the smoothed image.

DESCRIPTION
Function gsm performs 2D gaussian smoothing of the image M, with standard deviation sigma,
using FFT.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

[Img,map] = imread(’onca.gif’);
xbasc()
imshow(Img,map);
Img = im2gray(Img, map); // Img is now 0-1 range
xbasc()
imshow(Img);
Img = gsm2d(Img,2);
xbasc()
imshow(Img);

chdir(initial dir);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
gsm, imconv, fft

SIP Toolbox January 2002 1

GSM(1) GSM(1)

NAME
gsm − 1D gaussian smoothing

SYNOPSIS
[xsm, Xsm] = gsm(x [, sigma, delta, in, out])
[xsm, Xsm] = gsm(x, <named args>)

INPUT PARAMETERS
x the vector to be smoothed (row or column vector), real or complex.

sigma the standard deviation of the gaussian kernel. If sigma is zero, gsm returns the input
vector unaltered in xsm. (Defaults to 5)

delta a double number. If the input is in the time domain, this is the time between samples
(delta t), and defaults to 1. If the input is in the frequency domain, this is the frequency
increment between samples (delta f), and defaults to 1/N, where N is the number of sam-
ples.

in indicates if the input, x, is a function of time (no FFT has been applied) or frequency
(FFT has already been applied). Can be ’time’ or ’frequency’. (Defaults to ’time’)

out indicates if the output, xsm, is a function of time (inverse FFT will be applied) or fre-
quency (inverse FFT will not be applied). Can be ’time’ or ’frequency’. (Defaults to
’time’)

<named args>
This is a sequence of statements key1=value1, key2=value2,... where key1, key2,... can be
any of the optional arguments above (sigma, in, out), in any order.

OUTPUT PARAMETERS
xsm the smoothed vector in "time" or "frequency" domain.

Xsm the smoothed vector in "frequency" domain.

DESCRIPTION
Function gsm performs gaussian smoothing of the vector x, with standard deviation sigma, using
FFT. The optional arguments in and out enables the user to reuse previously done FFTs. Here
are some possible uses of gsm:

xsm = gsm(x)
sigma defaults to 5, in and out both defaults to ’time’.

xsm = gsm(x,15)
sigma equals 15, in and out both defaults to ’time’.

xsm = gsm(x,15, out=’frequency’)
x in time domain. xsm in frequency domain (inverse fft is NOT done by gsm)

xsm = gsm(x,15,in=’frequency’, out=’frequency’)
x in frequency domain (fft has already been done). xsm in frequency domain (inverse fft
is NOT done by gsm)

xsm = gsm(x, ’frequency’, delta=0.1)
delta f is 0.1 sigma defaults to 5 x in frequency domain. xsm in time domain (inverse fft is
done by gsm)

In all above examples, Xsm is in the frequency domain. It is the second output parameter, and
thus it was discarded in the above examples.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

SIP Toolbox March 2002 1

GSM(1) GSM(1)

Img = imread(’star.bmp’);
xset(’window’,0);
xbasc()
imshow(Img,2);
[x,y] = follow(Img); // get the parametric contour
xset(’window’,1)
xbasc()
t=1:size(x,’*’);
plot2d(t,x,2);
plot2d(t,y,1);
xsm = gsm(x,15); // gaussian-smooth the contour
ysm = gsm(y,15);
// builds an image from parametric contour:
Img2=unfollow(xsm,ysm,size(Img));
xset(’window’,0);
xbasc()
imshow(Img2,2);

chdir(initial dir);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
gsm2d, fft

SIP Toolbox March 2002 2

HELLO SIP(1) HELLO SIP(1)

NAME
hello sip − learn to add your own C routine to SIP

SYNOPSIS
sum = hello sip(a,b)

PARAMETERS
a double-precision scalar

b double-precision scalar

c double-precision scalar

DESCRIPTION
"hello sip" is a very simple example routine. The aim is that new developers know quickly how to
add a new C-language implemented function to SIP.

hello sip(a,b) simply returns a + b through a C routine.

The following files in the SIP sourcecode tree are related to the implementation of hello sip:
src/hello int.c --

interfaces C to Scilab
src/builder.sce --

specifies the interface files and scilab name; this script is ran by Scilab to compile
the interface C routines into a shared library.

From AnImaL (aminal.sourceforge.net),
animal/hello.c -- routine that returns a+b

From AnImaL (aminal.sourceforge.net),
animal/hello.h -- header with the prototype of hello

From AnImaL (aminal.sourceforge.net),
animal/animal.h general header for the internal C library

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
In the SIP source tree, start with the "hello.c" file inside the directory "src".

Obsoleted: Figure 1 of the first SIP monograph (written in portuguese), which may be found in
the SIP home page. SIP now uses an independent computer vision library, AnImaL, for its inter-
nal processing. See: http://animal.sourceforge.net

Moreover, in the scilab source tree, the directories "examples/interface-tour.so" and "exam-
ples/interface-tutorial.so" provide detailed information on interfacing C and Scilab.

SIP Toolbox NOVEMBER 2002 1

HOUGH(1) HOUGH(1)

NAME
hough − hough transform for line detection

SYNOPSIS
[ht, rho range] = hough(imbin)

PARAMETERS
imbin binary image array (foreground equals 1)

ht Hough transform accumulation matrix. Rho varies along rows; theta varies along columns.
Theta range is 0-179 degrees w/ 180 samples.

rho range
Vector containing the range of radius values. Equals -rmax:rmax, where rmax is the maxi-
mum radius possibly found in the input image.

DESCRIPTION
Function hough calculates the hough transform of a binary image. The coordinate system is cen-
tered in the image, and the Y axis points downwards. Theta grows from X axis to Y axis. Nega-
tives rho’s point to the upper half of the image.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

// ======= Example 1

im = imread(’star.bmp’);
im = bwborder(im);
xbasc()
imshow(im,2);

h = hough(im);
xbasc()
imshow(h,[]); // theta varies horizontally from 0 to 180

ht = 1*(h>= 40); // threshold the hough space
lim = ihough(ht,size(im)); // draw the detected lines
xbasc()
imshow(lim + 2*im +1, hotcolormap(4)) // detected lines shown in yellow

// ======= Example 2: how to obtain the parameters
//
// creating a empty picture with a line at y = -90
e = zeros(200,200);
e(10,:) = 1;

// (remember that the Y axis points downwards and is centered in the
// middle of the image)

// getting its hough transform, and finding the points
// corresponding to y=10
[h, rrange] = hough(e);
[r,c] = find(h == max(h))

SIP Toolbox January 2002 1

HOUGH(1) HOUGH(1)

// Gets the parameters of the line
theta = c - 1 // 90 degrees
rho = rrange(r) // -90 rho (upper half of image)

// thx to Herve Lombaert for inspiring example #2 !

chdir(initial dir);

KNOWN PROBLEMS
There are no parameters for controlling the sampling of the parameter space. Also, the routine is
too slow even for medium-sized images. It’s purpose is for prototyping. When the function gets
better, it will be transcribed to C language.

REFERENCES
"Shape Analysis and Classification", L. da F. Costa and R. M. Cesar Jr., CRC Press.

"Practical Computer Vision using C", J. R. Parker, Wiley.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
ihough, drawline, edge

SIP Toolbox January 2002 2

IHOUGH(1) IHOUGH(1)

NAME
ihough − inverse hough transform

SYNOPSIS
im = ihough(ht,dims)

PARAMETERS
im binary image with digital straight lines

ht binarized Hough transform accumulation matrix. Rho varies along rows; theta varies
along columns. Theta range is 0-179 degrees w/ 180 samples.

dims vector with the size of the output image. Can be the output of the "size" routine.

DESCRIPTION
Function ihough calculates the inverse hough transform of a binary image. It takes as input a
binarized hough image, and draws the corresponding digital straight lines in the output image.

EXAMPLE
Cf. help page for hough.

REFERENCES
"Shape Analysis and Classification", L. da F. Costa and R. M. Cesar Jr., CRC Press.

"Digital Image Processing Algorithms", I. Pitas, Prentice Hall.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
hough, drawline, edge

SIP Toolbox January 2002 1

IM2BW(1) IM2BW(1)

NAME
im2bw − convert images to binary by thresholding

SYNOPSIS
BW = im2bw(Img, level [, maxvalue])
BW = im2bw(Index, map, level [, maxvalue])

PARAMETERS
Img M x N x 3 truecolor image or M x N grayscale intensity image.

index and map
M x N indexed image and its M x 3 colormap.

level the threshold level, between 0 to 1 (a ratio, like percentage). Pixels of the image that are
higher or equal than the level are mapped to 1, while pixels that are strictly lower than
the level are mapped to zero.

maxvalue
the maximum value to assume Img can take. (Optional, defaults to 1)

DESCRIPTION
Function im2bw converts RGB images, indexed images and grayscale intensity images to binary,
by thresholding.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

[Img,map] = imread(’indian.bmp’);
xbasc()
imshow(Img, map);
bw = im2bw(Img, map,0.5);
imshow(bw,2);
bw = im2bw(Img, map,0.2);
imshow(bw,2);

chdir(initial dir);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
im2gray

SIP Toolbox January 2002 1

IM2GRAY(1) IM2GRAY(1)

NAME
im2gray − converts color images or colormaps to grayscale

SYNOPSIS
GrayImg = im2gray(RGBImg)
GrayImg = im2gray(index, map)
GrayMap = im2gray(RGBColormap)

PARAMETERS
RGBImg

M x N x 3 truecolor image in any range.

RGBColormap
M x 3 colormap in rgb colorspace.

index and map
M x N indexed image and its M x 3 colormap.

GrayImg
M x N intensity image.

GrayMap
M x 3 colormap.

DESCRIPTION
Function im2gray converts RGB images, indexed images and RGB colormaps to grayscale. This
is accomplished by converting these objects to YIQ colorspace, make the I and Q channels equal
to zero, and finally converting back to RGB colorspace.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = imread(’tru.jpg’);
Img = im2gray(Img);
xbasc()
imshow(Img);

chdir(initial dir);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
im2bw, rgb2ntsc

SIP Toolbox January 2002 1

IMCONV(1) IMCONV(1)

NAME
imconv − 2D convolution

SYNOPSIS
Outm = imconv(Img, mask [, form])

PARAMETERS
Img M x N Grayscale (intensity) image in any range.

mask n x n matrix, n odd. This is the spatial convolution kernel.

Outm The convolved matrix (grayscale image).

form determines the size of Outm. It assumes be one of the following values:
’same’

Outm has the same size as the original image, M x N. The image is assumed to
be 0 outside its bounds.

’full’ Outm contains the full convolution, (M+n-1) x (N+n-1). The image is assumed
to be 0 outside its bounds.

’valid’ Outm contains only the results of the convolution which have been computed
within the bounds of Img. Outm will be (M-n+1) x (N-n+1).

DESCRIPTION
Function imconv performs 2D spatial convolution of a grayscale image and a mask.

edge(Img) Detects edges in Img, using the sobel gradient estimator, 0.5 threshold level and in
both horizontal and vertical directions.

The other parameters are optional and non-positional. That is, they may be passed to the func-
tion by their name. The following example illustrates this.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

// Detect horizontal lines
h = [-1 -1 -1

2 2 2
-1 -1 -1]

img = imread(’gra.jpg’);
res = imconv(img,h);
imshow(res,[]);
// Detect diagonal lines
d = [-1 -1 2

-1 2 -1
2 -1 -1]

res = imconv(img,d);
imshow(res,[]);

chdir(initial dir);

REMARKS
The kernel is not rotated by 180 degrees. This is in truth a correlation operator, but in practice
only symmetric kernels are used.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>, with help from Scilab Group <Scilab@inria.fr>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

SIP Toolbox January 2002 1

IMCONV(1) IMCONV(1)

http://siptoolbox.sourceforge.net

SEE ALSO
mkfilter, edge

SIP Toolbox January 2002 2

IMCORRCOEF(1) IMCORRCOEF(1)

NAME
imcorrcoef − template matching by normalized correlation

SYNOPSIS
C = imcorrcoef(Img, template)

PARAMETERS
Img M x N Grayscale image in any range.

template
n x n matrix, n odd. A small object to be found in the image.

C The correlation coefficient image. Its highest value occurs where the template matches
exactly.

DESCRIPTION
Function imcorrcoef performs template matching by 2D correlation of a grayscale image and a
template. This means the template is compared to the image pixel-by-pixel, for every possible
translation of the template. The result is normalized to range from -1 to +1. You may also use the
absolute value of this measure.

This is an expensive calculation, and should be used only for small templates. The object to be
detected must appear in the image with very little variation of rotation and scale. This is useful if
you can restrict the image capture to avoid those problems.

EXAMPLE
//
// Let’s detect the letter "B" in a license plate
//
img = gray imread(SIPDIR+’images/plate.jpg’);
xbasc(), imshow(img);
template = gray imread(SIPDIR+’images/template.jpg’);
xbasc(), imshow(template);

C = imcorrcoef(img, template);

xbasc();
imshow(img+2*(C==maxi(C)),[]); // letter is detected!!

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
imconv, mkfilter, edge

SIP Toolbox September 2003 1

IMFINFO(1) IMFINFO(1)

NAME
imfinfo − image file information

SYNOPSIS
info = imfinfo(filename)
info = imfinfo(filename, ’verbose’)

PARAMETERS
filename

A string, the image filename to be described. The extension determines the type of the
image.

’verbose’
causes imfinfo to print image description on the screen.

info A structure (Scilab typed list) containing the descriptions under each of the following
fields:

FileName
need no comment.

FileSize
measured in bytes.

Format
"JPEG", "TIFF", "GIF", "BMP", etc.

Width
number of columns.

Height
number of rows.

Depth
bits per pixel.

StorageType
"truecolor" or "indexed".

NumberOfColors
size of the colormap. Equals to zero for truecolor images.

ResolutionUnit
"inch" or "centimeters".

XResolution
number of pixels per ResolutionUnit in X direction.

YResolution
number of pixels per ResolutionUnit in Y direction.

DESCRIPTION
imfinfo is used to get a description from image files, without reading the pixels into memory. A
structure (Scilab typed list) is returned with the information, which can be accessed by their
names (e.g. info.Depth, info.FileSize, ...). The ’verbose’ option causes the description to be
printed in an organised manner.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

info = imfinfo(’example.png’); // reads information into a tlist
info.Depth // members are accessed by name
info.StorageType

SIP Toolbox January 2002 1

IMFINFO(1) IMFINFO(1)

imfinfo(’example.png’,’verbose’); // pretty-print description

chdir(initial dir);

REMARKS
In theory, imfinfo will work with any raster image format. In practice, it has been tested only for
BMP, GIF, JPEG, PNG, PCX, TIFF, XPM, and MIFF. imfinfo will probably work with other
formats, but in this case have not been tested by the developers of the SIP toolbox.

BUGS AND SHORTCOMINGS
Images are stored in double precision matrices. Hopefully, the next release will make usage of inte-
ger types.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
imwrite, imread, imshow

SIP Toolbox January 2002 2

IMNOISE(1) IMNOISE(1)

NAME
imnoise − generate noise (salt & pepper, etc)

SYNOPSIS
J = imnoise(I, type [,parameters])

PARAMETERS
I Input image (grayscale).

J Noisy image (grayscale).

type String having one of these values:
’salt & pepper’: drop-out/On-off noise
’speckle’: multiplicative noise
’gaussian’: Gaussian white/additive noise
’localvar’: Pixel-specific variance (Zero-mean Gaussian)

parameters
A sequence of parameters to control the noise distribution, depending on the chosen type.
If omitted, default values are used (see below).

DESCRIPTION
imnoise(Img, type) adds a type of noise to the intensity image Img. Optionally, you can control
the noise parameters starting at the 3rd. argument to imnoise. Here are example of noise types
and their params:

J = imnoise(I,’salt & pepper’,d) adds drop-out noise, where d is the noise density (probabil-
ity of swapping a pixel). (default: d=0.05).

J = imnoise(I,’salt & pepper’, d, val) does the same, but "val" is the value of salt (defaults
to maximum of image). If "val" == 0, then pixels are replaced by uniformly random gray values.

J = imnoise(I,’gaussian’,m,v) adds Gaussian additive noise of mean m and variance v.
(default: m=0 and v=0.01)

J = imnoise(I,’localvar’,V) additive zero-mean Gaussian noise where the variance at Img(i,j) is
V(i,j).

J = imnoise(I,’speckle’,v) adds multiplicative noise, using J = I+ noise*I, where noise is uni-
formly distributed with mean 0 and variance v. (default: v=0.04)

The mean and variance parameters are specified as if image intensities went from 0 to 1. By
default, we consider that "1" corresponds to the maximum intensity value of the image. If you
want to change this for ’gaussian’ and ’speckle’, pass an extra parameter at the end of the argu-
ment list. For instance, your image may have maximum intensity 180 even though the grayscale
range is 0-1:

J = imnoise(I,’gaussian’, m, v, val)

J = imnoise(I,’speckle’, v, val)

EXAMPLE
xset(’auto clear’, ’on’);
A = gray imread(SIPDIR + ’images/gra.jpg’);
imshow(A);

N = imnoise(A,’salt & pepper’);
imshow(N,[]);

SIP Toolbox AUGUST 2003 1

IMNOISE(1) IMNOISE(1)

N = imnoise(A,’salt & pepper’,0.3);
imshow(N,[]);

// Replace pixel by independent random value:
N = imnoise(A,’salt & pepper’,0.3,0);
imshow(N,[]);

// Replace pixel by *dependent* random value:
N = imnoise(A,’speckle’);
imshow(N,[]);

xset(’auto clear’, ’off’);

REFERENCES
"Noise Generation", The Hypermedia Image Processing Reference (HIPR), R. Fisher, S. Perkins,
A. Walker and E. Wolfart, University of Edinburgh
http://www.dai.ed.ac.uk/HIPR2/noise.htm

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
mogrify ’-noise’ flag, mkfilter, gsm2d

SIP Toolbox AUGUST 2003 2

IMPHASE(March 2003) IMPHASE(March 2003)

NAME
imphase − image phase calculation.

SYNOPSIS
phase value = imphase(formula name,thresh,im1,im2,im3[,im4,im5])

PARAMETERS
phase value

a 2D array containing the calculated phase (between (-%pi) and (+%pi)).

formula name
a string, the name of the formula to use to calculate the phase. May be
’bucket3a’ (3 images, phase shift=(%pi/2)),
’bucket3b’ (3 images, phase shift=(2*%pi/3)),
’bucket3c’ (3 images, phase shift=(2*%pi/3)),
’bucket4a’ (4 images, phase shift=(%pi/2)),
’bucket5a’ (5 images, phase shift=(%pi/2)),
’bucket5b’ (5 images, phase shift=(%pi/2)).

threshold
if the difference for a pixel between 2 images is less than this threshold, than this pixels is
considered to be belong to the background.

im1, im2, ...
matrix containing an image.

DESCRIPTION
imphase calculates the phased image resulting from the combination of several phase-shifted pic-
tures.

This function is used in profilometry (or in interferometry) to calculate the phase on any point of
an image. The elevation of a point is proportionnal to the calculated of this point.

Here is a usual method for proceeding:
1) Fringes are projected on a reference plane, perpendicular to a CCD camera.
2) A 1st image is taken with the CCD camera.
3) Fringes are deplaced from a quarter of an interfringe (in this case, phase shift = %pi/2)
4) A 2nd image is taken. And so on...
5) The phased image(phref) is calculated from these images. Several algorithms exist depending
on

a) the phase shift (often (2*%pi/3) or (%pi/2))
b) the number of images available

6) Repeat the same operations with an object instead of the reference plane. Calculate (phobj):
the phased image for the object.
7) Unwrap (phref) and (phobj) in (uwphref) and (uwphobj).
8) The altitude map is proportional to (uwphobj)-(uwphref)

Using five images (when it is possible) should lead to better phase calculation.

formula can be: usage: general purpose (vibration environnements) phase=arctan((i3-i2)/(i1-i2))

usage: general purpose (vibration environnements) p1=2*(%pi/3);p2=2*p1; phase=arc-
tan(((i3-i2)+(i1-i3)*cos(p1)+(i2-i1)*cos(p2))/...

((i1-i3)*sin(p1)+(i2-i1)*sin(p2)))

usage: general purpose (vibration environnements) phase=arctan((sqrt(3)*(i3-i2))/(2*i1-i2-i3))

SIP Toolbox 1

IMPHASE(March 2003) IMPHASE(March 2003)

usage: general purpose phase=arctan((i4-i2)/(i1-i3))

usage: phase shift correction (Hariharan) phase=arctan((2*(i4-i2))/(i1-2*i3+i5))

usage: enhanced phase shift error correction (Creath/Schmit) phase=arc-
tan((i1-4*i2+4*i4-i5)/(i1+2*i2-6*i3+2*i4+i5))

Note about Object mask: If the value of a pixel doesn’t vary more than the threshold between two
images, than we consider that this pixel is in the background (and not on the object on which we
project fringes), and we give it the phase = 0 radian.

EXAMPLE
As all this may not be easy for people unused to these
concepts of phase shifting and phase unwrapping,
here is a very detailled (and long) example:
all the steps (1 to 8) above are illustrated.
I found more useful for this example to show how to simulate
several objects

//begin
stacksize(4e7);//much memory needed to treat pictures

nb=6;//number of black fringes on the reference plane
step=0.02;//definition of the image
theta=%pi/6;//fringes are projected on the object
//with this angle (compared to the vertical)
//(nb:this script doesn’t consider shadows which can occur in real cases)

xmax=5.3;
x=0:step:xmax;
p=(xmax/nb)/cos(theta);//distance between two black fringes
//projected on a plane perpendicular to the camera
//(=interfringe seen from the camera)
y=ones(x);
plan=(x’*y)’;//matrix defining the reference plane

//Now we choose an altitude for each point of the plane:
//Below is the simulation of 3 common objects:
//a gaussian, a wedge and a pyramid.
//just uncomment the one you want (here: pyramid)

//Simulation of a gaussian object:
//size gauss=1.5;//parameter to have a gaussian object large or narrow
//amplitude=5;//maximal height of the object
//relief line=exp((-(x-2.5).ˆ2)/size gauss);//these functions can be adapted to
//relief column=exp((-(x-2.5).ˆ2)/size gauss);// simulate any object you want
//z=amplitude*relief column’*relief line;//compute altitude

SIP Toolbox 2

IMPHASE(March 2003) IMPHASE(March 2003)

//Simulation of a prism (or a wedge): because of the dicontinuities
//the unwrapping process will make an error in shape reconstitution
//relief line=ones(x);
//start point=56;//the prism begins on column 56
//relief line(start point:$)=2*(x(start point:$)-x(start point))...
// +relief line(start point-1);
//relief column=ones(x);
//z=relief column’*relief line;//compute altitude
//z(1:54,:)=ones(z(1:54,:));//the prism is only between
//z(100:$,:)=ones(z(100:$,:));//lines 55 to 99

//Simulation of a pyramid
relief line=ones(x);
start point=floor(size(x,’c’)/2);//the pyramid is centered in the picture
relief line(1:start point)=2*(x(1:start point));
relief line(start point:$)=-2*(x(start point:$)-x(start point))...

+relief line(start point-1);
relief column=ones(x);
relief column(1:start point)=2*(x(1:start point));
relief column(start point:$)=-2*(x(start point:$)-x(start point))...

+relief column(start point-1);
//compute altitude:
z=relief column’*ones(relief line)+ones(relief column)’*relief line;

//phase calculation
phref=2*%pi*(plan/p);//phase of reference (phase of the points of
//the reference plane)
phobj=2*%pi*(plan+z*tan(theta))/p;//phase of the points of the object

//simulate 4 images shifted with (%pi/2) for the reference plane
//and calculate the phased image
phi=phref;
image=zeros(phi);

for a=1:4
dephi=(a-1)*%pi/2;//phase shift=(%pi/2)
lum=127.5*(1+cos(phi+dephi));//calculate luminance of the image
image(:,:,a)=lum;
end

//phase calculation for the reference plane
ph1=imphase(’bucket4a’,0,image(:,:,1),image(:,:,2),image(:,:,3),image(:,:,4));

//simulate 4 images shifted with (%pi/2) with fringes projected on the object
phi=phobj;
image=zeros(phi);

for a=1:4
dephi=(a-1)*%pi/2;//phase shift=(%pi/2)
lum=127.5*(1+cos(phi+dephi));//calculate luminance of the image

SIP Toolbox 3

IMPHASE(March 2003) IMPHASE(March 2003)

image(:,:,a)=lum;
end

//phase calculation for the object
ph2=imphase(’bucket4a’,0,image(:,:,1),image(:,:,2),image(:,:,3),image(:,:,4));

//display the original object on which we projected fringes
xset("window",0);xbasc();
plot3d1(1:8:size(z,’r’),1:8:size(z,’c’),z(1:8:$,1:8:$));
xtitle("original object: relief");

//display one of the images with fringes
xset("window",1);xbasc();imshow(image(:,:,1)/maxi(image(:,:,1));
xtitle([’one of the original images:’;’friges are projected on the object’]);

//display the phased image of the object
xset("window",2);xbasc();
imshow((ph2+%pi)*(1/(2*%pi)));xtitle(’image of phase for the object’);

//Now we verify if what we’ve done is correct:
//we exploit the phased images to find again the profile of the object:
//1st step is phase unwrapping:
disp(’phase unwrapping: be a bit patient’);
//unwrap the phase corresponding to the referenc plane:
uwphref=unwrapl((ph1+%pi)*(127.5/%pi));
//unwrap the phase corresponding to the object:
uwphobj=unwrapl((ph2+%pi)*(127.5/%pi));

//2nd step:the difference of unwrapped phases is
//proportionnal to the altitude z
uwpht=uwphobj-uwphref;
//3rd step: display
xset("window",3);xbasc();plot3d1(1:size(uwpht,’r’),1:size(uwpht,’c’),uwpht);
xtitle([’phase reconstituted from the wrapped phases’;

’this phase is proportionnal to altitude’]);

//end

REFERENCES
software FRINGE ANALYSIS by HOLO3 (St Louis, FRANCE)

software INTELLIWAVE by engsynthesis

Optics 505 - James C.Wyant

"Modelisation de forme 3D par methode de moire de projection et analyse par decalage de
phases", Cyril Breque & Fabrice Bremand

"Metrologie optique par decalage de phase", Yves Surrel,conservatoire national des arts et metiers

A google search with keywords: phase shifting interferometry or moire or phase unwrapping
should lead to good introductory documents on the subject.

SIP Toolbox 4

IMPHASE(March 2003) IMPHASE(March 2003)

AUTHOR
Jocelyn DRUEL <jocelyn.druel1@libertysurf.fr>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://cyvision.if.sc.usp.br/˜rfabbri/sip/

SEE ALSO
unwrapl

SIP Toolbox 5

IMPROFILE(1) IMPROFILE(1)

NAME
improfile − draws intensity profiles of an image

SYNOPSIS
[hprofile,vprofile]=improfile(matrix[,option,maximal luminance])

PARAMETERS
matrix

The gray-level matrix obtained by matrix=imread("my picture.jpg").

option
0 to draw the profiles on the image 1 to draw the profiles in separated windows. 2 to
draw the profiles on the image and the gaussian interpolation (used with laser beam
images) Default=0.

maximal luminance
hprofile and vprofile will contain values in the 0-1 range. To draw the profile, you can
specify a multiplication factor to these values. For example, if your initial image was
8bits, you could pass 255 as the maximal luminanace of the image. Default= 255.

hprofile (or vprofile)
Matrix containing the horizontal (or vertical) profile selected.

DESCRIPTION
Draws the values of pixels on a line and/or a row. Can draw profiles on the image or in separate
windows. With the option=2, you can determine radius w of a laser beam, which allows you to
find the beam waist.

This function was created (and tested) only with gray level images.

EXAMPLE
a=imread(SIPDIR+’images/tru.jpg’);
g=im2gray(a);
improfile(g);

//profiles in separate windows
improfile(g,1)

//laser beam visualisation
b=gray imread(SIPDIR+’images/photonics/laser1.jpg’);
improfile(b,2);

REMARKS
This function is a bit different than its MatLab equivalent.

AUTHORS
Jocelyn DRUEL <jocelyn.druel1@libertysurf.fr> Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
xgetpixel

SIP Toolbox February 2004 1

IMREAD(1) IMREAD(1)

NAME
imread − reads image file in ANY format

SYNOPSIS
Image = imread(filename)

[Index, Map] = imread(filename)

PARAMETERS
filename

A string, the image filename to be read. The extension determines the type of the image.

Image For truecolor images, this is a MxNx3 matrix in range 0-1 (double precision); For binary
images, image is a MxNx1 matrix (0=black and 1=white).

Index MxN matrix containing the indexes to the image colormap (for indexed images). Indices
start at 1.

Map Mx3 matrix containing the image colormap. Entries range from 0 to 1 (double precision).

DESCRIPTION
imread reads BMP, GIF, JPEG, PNG, PCX, TIFF, XPM, and even more types of
image files into Scilab. The format of the file is inferred from the extension in the filename param-
eter.

Img = imread(filename) reads image in filename into Img matrix. If filename contains a true-
color image, Img is a MxNx3 hypermatrix, so for example Img(:,:,1) stands for the red channel.
For binary images, Img is a MxNx1 matrix.

[Index,Map] = imread(filename) reads the indexed image in filename into Index (MxN) and
Map (Mx3), its colormap. Grayscale and Paletted images are read in this way.

To know if the image stored in filename is truecolor or indexed, you can use the imfinfo com-
mand, and then call imread accordingly.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

imfinfo(’example.png’,’verbose’);
// the image is indexed
[im,i] = imread(’example.png’);
xbasc();
imshow(im,i);

chdir(initial dir);

FILE FORMATS
SIP should work with the following formats, but there is no warranty (unless you pay something
:-). Please contact us in case of any problems.

Name Mode Description
o 8BIM *rw Photoshop resource format
o AFM *r- TrueType font
o APP1 *rw Photoshop resource format
o ART *r- PF1: 1st Publisher
o AVI *r- Audio/Visual Interleaved
o AVS *rw AVS X image
o BIE *rw Joint Bi-level Image experts Group

interchange format
o BMP *rw Microsoft Windows bitmap image
o CAPTION *r+ Caption (requires separate size info)

SIP Toolbox January 2002 1

IMREAD(1) IMREAD(1)

o CMYK *rw Raw cyan, magenta, yellow, and black
samples (8 or 16 bits, depending on
the image depth)

o CMYKA *rw Raw cyan, magenta, yellow, black, and
matte samples (8 or 16 bits, depending
on the image depth)

o CUT *r- DR Halo
o DCM *r- Digital Imaging and Communications in

Medicine image
o DCX *rw ZSoft IBM PC multi-page Paintbrush
o DIB *rw Microsoft Windows bitmap image
o DPS *r- Display PostScript
o DPX *r- Digital Moving Picture Exchange
o EPDF *rw Encapsulated Portable Document Format
o EPI *rw Adobe Encapsulated PostScript

Interchange format
o EPS *rw Adobe Encapsulated PostScript
o EPS2 *-w Adobe Level II Encapsulated PostScript
o EPS3 *-w Adobe Level III Encapsulated PostScript
o EPSF *rw Adobe Encapsulated PostScript
o EPSI *rw Adobe Encapsulated PostScript

Interchange format
o EPT *rw Adobe Encapsulated PostScript with TIFF

preview
o FAX *rw Group 3 FAX
o FILE *r- Uniform Resource Locator
o FITS *rw Flexible Image Transport System
o FPX *rw FlashPix Format
o FTP *r- Uniform Resource Locator
o G3 *rw Group 3 FAX
o GIF *rw CompuServe graphics interchange format
o GIF87 *rw CompuServe graphics interchange format

(version 87a)
o GRADIENT *r- Gradual passing from one shade to

another
o GRANITE *r- Granite texture
o GRAY *rw Raw gray samples (8 or 16 bits,

depending on the image depth)
o H *rw Internal format
o HDF -rw Hierarchical Data Format
o HISTOGRAM *-w Histogram of the image
o HTM *-w Hypertext Markup Language and a

client-side image map
o HTML *-w Hypertext Markup Language and a

client-side image map
o HTTP *r- Uniform Resource Locator
o ICB *rw Truevision Targa image
o ICM *rw ICC Color Profile
o ICO *r- Microsoft icon
o ICON *r- Microsoft icon
o IMPLICIT *--
o IPTC *rw IPTC Newsphoto
o JBG *rw Joint Bi-level Image experts Group

interchange format

SIP Toolbox January 2002 2

IMREAD(1) IMREAD(1)

o JBIG *rw Joint Bi-level Image experts Group
interchange format

o JP2 *rw JPEG-2000 JP2 File Format Syntax
o JPC *rw JPEG-2000 Code Stream Syntax
o JPEG *rw Joint Photographic Experts Group

JFIF format
o JPG *rw Joint Photographic Experts Group

JFIF format
o LABEL *r- Text image format
o LOGO *rw ImageMagick Logo
o M2V *rw MPEG-2 Video Stream
o MAP *rw Colormap intensities (8 or 16 bits,

depending on the image depth) and
indices (8 or 16 bits, depending
on whether colors exceeds 256).

o MAT *-w MATLAB image format
o MATTE *-w MATTE format
o MIFF *rw Magick image format
o MNG *rw Multiple-image Network Graphics
o MONO *rw Bi-level bitmap in least-significant-

-byte-first order
o MPC -rw Magick Persistent Cache image format
o MPEG *rw MPEG-1 Video Stream
o MPG *rw MPEG-1 Video Stream
o MPR *r- Magick Persistent Registry
o MSL *r- Magick Scripting Language
o MTV *rw MTV Raytracing image format
o MVG *rw Magick Vector Graphics
o NETSCAPE *r- Netscape 216 color cube
o NULL *r- Constant image of uniform color
o OTB *rw On-the-air bitmap
o P7 *rw Xv thumbnail format
o PAL *rw 16bit/pixel interleaved YUV
o PALM *rw Palm Pixmap format
o PBM *rw Portable bitmap format (black and white)
o PCD *rw Photo CD
o PCDS *rw Photo CD
o PCL *-w Page Control Language
o PCT *rw Apple Macintosh QuickDraw/PICT
o PCX *rw ZSoft IBM PC Paintbrush
o PDB *r- Pilot Image Format
o PDF *rw Portable Document Format
o PFA *r- TrueType font
o PFB *r- TrueType font
o PFM *r- TrueType font
o PGM *rw Portable graymap format (gray scale)
o PICON *rw Personal Icon
o PICT *rw Apple Macintosh QuickDraw/PICT
o PIX *r- Alias/Wavefront RLE image format
o PLASMA *r- Plasma fractal image
o PM *rw X Windows system pixmap (color)
o PNG *rw Portable Network Graphics
o PNM *rw Portable anymap
o PPM *rw Portable pixmap format (color)

SIP Toolbox January 2002 3

IMREAD(1) IMREAD(1)

o PREVIEW *-w Show a preview an image enhancement,
effect, or f/x

o PS *rw Adobe PostScript
o PS2 *-w Adobe Level II PostScript
o PS3 *-w Adobe Level III PostScript
o PSD *rw Adobe Photoshop bitmap
o PTIF *rw Pyramid encoded TIFF
o PWP *r- Seattle Film Works
o RAS *rw SUN Rasterfile
o RGB *rw Raw red, green, and blue samples (8 or

16 bits, depending on the image depth)
o RGBA *rw Raw red, green, blue, and matte samples

(8 or 16 bits, depending on the image
depth)

o RLA *r- Alias/Wavefront image
o RLE *r- Utah Run length encoded image
o ROSE *rw 70x46 Truecolor test image
o SCT *r- Scitex HandShake
o SFW *r- Seattle Film Works
o SGI *rw Irix RGB image
o SHTML *-w Hypertext Markup Language and a

client-side image map
o STEGANO *r- Steganographic image
o SUN *rw SUN Rasterfile
o SVG *rw Scalable Vector Gaphics
o TEXT *rw Raw text
o TGA *rw Truevision Targa image
o TIF *rw Tagged Image File Format
o TIFF *rw Tagged Image File Format
o TILE *r- Tile image with a texture
o TIM *r- PSX TIM
o TTF *r- TrueType font
o TXT *rw Raw text
o UIL *-w X-Motif UIL table
o UYVY *rw 16bit/pixel interleaved YUV
o VDA *rw Truevision Targa image
o VICAR *rw VICAR rasterfile format
o VID *rw Visual Image Directory
o VIFF *rw Khoros Visualization image
o VST *rw Truevision Targa image
o WBMP *rw Wireless Bitmap (level 0) image
o WMF *r- Windows Metafile
o WPG *r- Word Perfect Graphics
o X *rw X Image
o XBM *rw X Windows system bitmap (black

and white)
o XC *r- Constant image uniform color
o XCF *r- GIMP image
o XML *r- Scalable Vector Gaphics
o XPM *rw X Windows system pixmap (color)
o XV *rw Khoros Visualization image
o XWD *rw X Windows system window dump (color)
o YUV *rw CCIR 601 4:1:1

SIP Toolbox January 2002 4

IMREAD(1) IMREAD(1)

Modes:
* Native support (no call to external utility)
r Read
w Write

REMARKS
The new imshow is incompatible with the same function from sip-0.2.0 and previous versions. Its
behavior has been made more similar to that of comercial packages similar to Scilab.

BUGS AND SHORTCOMINGS
Images are stored in double precision matrices. Hopefully, the next release will also make use of
integer types.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
imwrite, gray imread, im2gray, imfinfo, imshow

SIP Toolbox January 2002 5

IMROI(January 2004) IMROI(January 2004)

NAME
imroi − roi (region of interest) of an image

SYNOPSIS
mask=imroi(image[,type of mask,option])

PARAMETERS
image A gray, color or binary image.

type of mask
´rect’: rectangular or ´ellipse’ are the only available selections by now.

option
0 displays no coordinates (default)
1 displays coordinates

mask Binary matrix (0 and 1) corresponding to the image selection. It has the same size as the
input image (e.g. it is 3D if the input is 3D, and 2D if the input is 2D).

DESCRIPTION
The function allows the user to select a Region of Interest (ROI) in an image ALREADY DIS-
PLAYED, and returns the corresponding binary matrix.

The mask is working with any of binary, gray or color images.

With the ellipse selection, you draw the rectangle in which the ellipse is drawn.

EXAMPLE
a=imread(SIPDIR+’images/ararauna.jpg’);
xset("window",0);xbasc();
imshow(a);
mask=imroi(a);
//the user must then select the ROI with the mouse
b=a.*mask;
xset("window",1);xbasc();
imshow(b);//displays just the ROI

REMARKS
The Matlab equivalent is roipoly, whose interface is a bit more complicated.

With Scilab-2.6, for color images, the image.*mask is not working (problem of matrix sizes). One
possibility to solve this:
image(1,1,1)=image(1,1,1);
then you can do
image.*mask; With Scilab-2.7 there is no problem.

TIP
To generate much more complex ROI’s, you can use the Gimp (GNU Image Manipulation Pro-
gram) <www.gimp.org>, although of course this is not an integrated solution.

AUTHORS
Jocelyn DRUEL <jocelyn.druel1@libertysurf.fr>

The code to display coordinates comes directly from the function xgetpixel by Ricardo Fabbri
<rfabbri@if.sc.usp.br>

SIP Toolbox 1

IMROI(January 2004) IMROI(January 2004)

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
imread, xgetpixel, GIMP

SIP Toolbox 2

IMSHOW(1) IMSHOW(1)

NAME
imshow − displays images in scilab graphic window

SYNOPSIS
imshow(Img)
imshow(Img,n)
imshow(Img,[low high])
imshow(Img,Map)
imshow(RGBImg)
imshow filename
imshow(Img, arg2 [, strf])

PARAMETERS
filename

A String, the image filename to be displayed. The extension determines the type of the
image.

Img MxN matrix, a grayscale (0-1 range) or pseudo-color/indexed (1-Ncolors range) image.

n A scalar, the number of levels of gray to display Img.

[low high]
1x2 array corresponding to the grayscale range to be considered.

Map Mx3 matrix containing the image colormap (for indexed images). Entries may range from
0 to 1

RGBImg
MxNx3 hypermatrix in 0-1 range.

strf this is used to e.g. put axes around your image. See the plot2d help page. You may use
this optional parameter in the assignment style, as in:

imshow(img, strf=’041’) //same as imshow but draw axes

DESCRIPTION
imshow(Img,n) displays Img using n gray levels. Img is an MxN matrix in 0 - (n-1) range. If n
is omitted, it will be assumed to be 256.

imshow(Img,[low high]) displays Img using a grayscale within the specified range. Elements
<= low will map onto black, Elements >= high will map onto white, and elements in between will
map as a shade of gray. If an empty matrix ’[]’ is used, [low,high] will be assumed to be
[mini(Img), maxi(Img)].

imshow(Img,Map) displays Img using the specified colormap.

imshow(RGBImg) displays the RGBImg MxNx3 (0-1) truecolor image.

imshow(filename) displays the image (filename) in scilab graphic. Any raster image format is
accepted (see REMARKS section).

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

a = rand(100,100); // create random image
xbasc();
imshow(a);

imshow(a*255 + 1,hotcolormap(256));
imshow(a,[0.3 0.6]);
imshow(a,[]);
xbasc();
imshow(’example.png’);

SIP Toolbox January 2002 1

IMSHOW(1) IMSHOW(1)

chdir(initial dir);

REMARKS
In theory, imshow(filename) will work with any raster image format. In practice, it has been
tested only for BMP, GIF, JPEG, PNG, PCX, TIFF, XPM, and MIFF. Displaying other file for-
mats will probably work, but this case have not been tested by the developers of the SIP toolbox.

BUGS AND SHORTCOMINGS
The display of truecolor images is somewhat inefficient.

Images are stored in double precision matrices. Hopefully, the next release will make usage of inte-
ger types.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
imread, imwrite, imfinfo, xgetpixel

SIP Toolbox January 2002 2

1(March 2003) 1(March 2003)

NAME
imvariance − calculates the variance of an image

SYNOPSIS
variance matrix = imvariance(image)

PARAMETERS
image A gray-level image.

DESCRIPTION
This function computes a matrix containing the variance of each point of an image.

The variance is the sum of the absolute value of the differences between the central pixel and its
neighbours:

variance=sum(|x(neighbour)-x(central)|)

A low variance value means a pixel is not very different from its neigbours (in all directions).

This property can be used to unwrap phased images. In case of a "path-following algorithm", the
variance can be a "merit function" used to determine which pixels should be connected first. This
"merit function" is much more noise immune than a "merit function" based on a laplace kernel.

This algorithm calculates the variance everywhere even on the edges. In some cases, consider mul-
tiplying by a mask like this
[8/3 8/5 8/5...;
8/5 1 1...;

so that edge values are really significatives.

EXAMPLE
stacksize(1e7); // images are very much memory consumming...

varian=imvariance(imread(SIPDIR+’images/photonics/pyramide wrapped.jpg’));

imshow(varian/max(varian));// high levels (blank on the image)
//represent points where intensity
//changes quickly

AUTHORS
Jocelyn DRUEL <jocelyn.druel1@libertysurf.fr>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
unwrapl, mkfilter(’laplace1’)

SIP Toolbox 1

IMWRITE(1) IMWRITE(1)

NAME
imwrite − writes to an image file in ANY format

SYNOPSIS
imwrite(Image, filename, [opt args])
imwrite(Index, Map, filename, [opt args])

PARAMETERS
filename

a string, the image filename to be created. The extension determines the type of the
image.

Image For truecolor images, this is a MxNx3 hypermatrix in 0-1 range; For binary images or
intensity grayscale images, it is a MxNx1 matrix in 0-1 range.

Index MxN matrix containing the indexes to the image colormap (for indexed images). Indices
start at 1.

Map Mx3 matrix containing the image colormap (for indexed images). Entries range from 0 to
1

[opt args]
This is a sequence of statements key1=value1, key2=value2,... where key1, key2,... can be
one of the following:
quality

sets the quality level for some formats of images that accept this parameter, like
JPEG. Ranges from 1 to 100 (default 75).

In the future, other options may be added, such as dithering and compression type.

DESCRIPTION
imwrite creates BMP, GIF, JPEG, PNG, PCX, TIFF, XPM, and even more types of
image files from Scilab elements. The format of the file is inferred from the extension in the file-
name parameter.

imwrite(Img, filename) creates an image filename in disk, from Img matrix. For truecolor
images, Img is a MxNx3 hypermatrix, so for example Img(:,:,1) stands for the red channel. For
binary images or intensity grayscale images, Img is a MxNx1 matrix.

imwrite(Index, Map, filename) does the same work, but from Index (MxN) and Map (Mx3)
matrices. Grayscale and Paletted images are written in this way.

EXAMPLE
a=rand(100,150); // create a random image
xbasc();
imshow(a);
imwrite(a,’SIPtmp.jpg’);
xbasc();
imshow(’SIPtmp.jpg’);
// now try viewing this image with an ordinary viewer to see
// how it really worked!

FILE FORMATS
SIP should work with the following formats, but there is no waranty (unless you pay something
:-). Please contact us in case of any problems.

Name Mode Description
o 8BIM *rw- Photoshop resource format
o AFM *r-- TrueType font
o APP1 *rw- Photoshop resource format
o ART *r-- PF1: 1st Publisher
o AVI *r-- Audio/Visual Interleaved

SIP Toolbox January 2002 1

IMWRITE(1) IMWRITE(1)

o AVS *rw+ AVS X image
o BIE *rw- Joint Bi-level Image experts Group

interchange format
o BMP *rw+ Microsoft Windows bitmap image
o CAPTION *r+ Caption (requires separate size info)
o CMYK *rw- Raw cyan, magenta, yellow, and black

samples (8 or 16 bits, depending on
the image depth)

o CMYKA *rw- Raw cyan, magenta, yellow, black, and
matte samples (8 or 16 bits, depending
on the image depth)

o CUT *r-- DR Halo
o DCM *r-- Digital Imaging and Communications in

Medicine image
o DCX *rw+ ZSoft IBM PC multi-page Paintbrush
o DIB *rw+ Microsoft Windows bitmap image
o DPS *r-- Display PostScript
o DPX *r-- Digital Moving Picture Exchange
o EPDF *rw- Encapsulated Portable Document Format
o EPI *rw- Adobe Encapsulated PostScript

Interchange format
o EPS *rw- Adobe Encapsulated PostScript
o EPS2 *-w- Adobe Level II Encapsulated PostScript
o EPS3 *-w- Adobe Level III Encapsulated PostScript
o EPSF *rw- Adobe Encapsulated PostScript
o EPSI *rw- Adobe Encapsulated PostScript

Interchange format
o EPT *rw- Adobe Encapsulated PostScript with TIFF

preview
o FAX *rw+ Group 3 FAX
o FILE *r-- Uniform Resource Locator
o FITS *rw- Flexible Image Transport System
o FPX *rw- FlashPix Format
o FTP *r-- Uniform Resource Locator
o G3 *rw- Group 3 FAX
o GIF *rw+ CompuServe graphics interchange format
o GIF87 *rw- CompuServe graphics interchange format

(version 87a)
o GRADIENT *r-- Gradual passing from one shade to

another
o GRANITE *r-- Granite texture
o GRAY *rw+ Raw gray samples (8 or 16 bits,

depending on the image depth)
o H *rw- Internal format
o HDF -rw+ Hierarchical Data Format
o HISTOGRAM *-w- Histogram of the image
o HTM *-w- Hypertext Markup Language and a

client-side image map
o HTML *-w- Hypertext Markup Language and a

client-side image map
o HTTP *r-- Uniform Resource Locator
o ICB *rw+ Truevision Targa image
o ICM *rw- ICC Color Profile
o ICO *r-- Microsoft icon

SIP Toolbox January 2002 2

IMWRITE(1) IMWRITE(1)

o ICON *r-- Microsoft icon
o IMPLICIT *---
o IPTC *rw- IPTC Newsphoto
o JBG *rw+ Joint Bi-level Image experts Group

interchange format
o JBIG *rw+ Joint Bi-level Image experts Group

interchange format
o JP2 *rw- JPEG-2000 JP2 File Format Syntax
o JPC *rw- JPEG-2000 Code Stream Syntax
o JPEG *rw- Joint Photographic Experts Group

JFIF format
o JPG *rw- Joint Photographic Experts Group

JFIF format
o LABEL *r-- Text image format
o LOGO *rw- ImageMagick Logo
o M2V *rw+ MPEG-2 Video Stream
o MAP *rw- Colormap intensities (8 or 16 bits,

depending on the image depth) and
indices (8 or 16 bits, depending
on whether colors exceeds 256).

o MAT *-w+ MATLAB image format
o MATTE *-w+ MATTE format
o MIFF *rw+ Magick image format
o MNG *rw+ Multiple-image Network Graphics
o MONO *rw- Bi-level bitmap in least-significant-

-byte-first order
o MPC -rw- Magick Persistent Cache image format
o MPEG *rw+ MPEG-1 Video Stream
o MPG *rw+ MPEG-1 Video Stream
o MPR *r-- Magick Persistent Registry
o MSL *r-- Magick Scripting Language
o MTV *rw+ MTV Raytracing image format
o MVG *rw- Magick Vector Graphics
o NETSCAPE *r-- Netscape 216 color cube
o NULL *r-- Constant image of uniform color
o OTB *rw- On-the-air bitmap
o P7 *rw+ Xv thumbnail format
o PAL *rw- 16bit/pixel interleaved YUV
o PALM *rw- Palm Pixmap format
o PBM *rw+ Portable bitmap format (black and white)
o PCD *rw- Photo CD
o PCDS *rw- Photo CD
o PCL *-w- Page Control Language
o PCT *rw- Apple Macintosh QuickDraw/PICT
o PCX *rw- ZSoft IBM PC Paintbrush
o PDB *r-- Pilot Image Format
o PDF *rw+ Portable Document Format
o PFA *r-- TrueType font
o PFB *r-- TrueType font
o PFM *r-- TrueType font
o PGM *rw+ Portable graymap format (gray scale)
o PICON *rw- Personal Icon
o PICT *rw- Apple Macintosh QuickDraw/PICT
o PIX *r-- Alias/Wavefront RLE image format

SIP Toolbox January 2002 3

IMWRITE(1) IMWRITE(1)

o PLASMA *r-- Plasma fractal image
o PM *rw- X Windows system pixmap (color)
o PNG *rw- Portable Network Graphics
o PNM *rw+ Portable anymap
o PPM *rw+ Portable pixmap format (color)
o PREVIEW *-w- Show a preview an image enhancement,

effect, or f/x
o PS *rw+ Adobe PostScript
o PS2 *-w+ Adobe Level II PostScript
o PS3 *-w+ Adobe Level III PostScript
o PSD *rw- Adobe Photoshop bitmap
o PTIF *rw- Pyramid encoded TIFF
o PWP *r-- Seattle Film Works
o RAS *rw+ SUN Rasterfile
o RGB *rw+ Raw red, green, and blue samples (8 or

16 bits, depending on the image depth)
o RGBA *rw+ Raw red, green, blue, and matte samples

(8 or 16 bits, depending on the image
depth)

o RLA *r-- Alias/Wavefront image
o RLE *r-- Utah Run length encoded image
o ROSE *rw- 70x46 Truecolor test image
o SCT *r-- Scitex HandShake
o SFW *r-- Seattle Film Works
o SGI *rw+ Irix RGB image
o SHTML *-w- Hypertext Markup Language and a

client-side image map
o STEGANO *r-- Steganographic image
o SUN *rw+ SUN Rasterfile
o SVG *rw+ Scalable Vector Gaphics
o TEXT *rw+ Raw text
o TGA *rw+ Truevision Targa image
o TIF *rw+ Tagged Image File Format
o TIFF *rw+ Tagged Image File Format
o TILE *r-- Tile image with a texture
o TIM *r-- PSX TIM
o TTF *r-- TrueType font
o TXT *rw+ Raw text
o UIL *-w- X-Motif UIL table
o UYVY *rw- 16bit/pixel interleaved YUV
o VDA *rw+ Truevision Targa image
o VICAR *rw- VICAR rasterfile format
o VID *rw+ Visual Image Directory
o VIFF *rw+ Khoros Visualization image
o VST *rw+ Truevision Targa image
o WBMP *rw- Wireless Bitmap (level 0) image
o WMF *r-- Windows Metafile
o WPG *r-- Word Perfect Graphics
o X *rw- X Image
o XBM *rw- X Windows system bitmap (black

and white)
o XC *r-- Constant image uniform color
o XCF *r-- GIMP image
o XML *r-- Scalable Vector Gaphics

SIP Toolbox January 2002 4

IMWRITE(1) IMWRITE(1)

o XPM *rw- X Windows system pixmap (color)
o XV *rw+ Khoros Visualization image
o XWD *rw- X Windows system window dump (color)
o YUV *rw- CCIR 601 4:1:1

Modes:
* Native blob support (no call to external utility)
r Read
w Write
+ Multi-image

REMARKS
In writing a binary image, there is NO MORE NEED to multiply it by 65535.

The file created by imwrite is not necessarily indexed or truecolor. Commands of the form
imwrite(I,M,filename) have a greater chance of creating an indexed image, and imwrite(RGB,file-
name) have a good chance of creating a truecolor image. However, the final result depends on the
characteristics of the image format. For example, JPEG images are always truecolor or grayscale.
Typing imwrite(Index,Map,’foo.jpg’) will necessarily create a truecolor image. But
imwrite(Index,Map,’foo.gif’) will certainly create an indexed image.

BUGS AND SHORTCOMINGS
Images are stored in double precision matrices. Hopefully, the next release will make use of integer
types.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
imread, imfinfo, imshow

SIP Toolbox January 2002 5

IND2RGB(1) IND2RGB(1)

NAME
ind2rgb − convert indexed images to truecolor storage

SYNOPSIS
RGB = ind2rgb(Index, map)

PARAMETERS
index and map

M x N indexed image and its M x 3 colormap.

RGB M x N x 3 truecolor image in the 0-1 range.

DESCRIPTION
Function ind2rgb converts indexed image storage to RGB (direct) truecolor storage.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

[Img,map] = imread(’indian.bmp’);
xbasc()
imshow(Img, map);
RGB = ind2rgb(Img, map);
imshow(RGB);

chdir(initial dir);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
im2gray, im2bw

SIP Toolbox January 2004 1

INTERFEROMETRY GUI(1) INTERFEROMETRY GUI(1)

NAME
interferometry gui − Graphical User Interface (GUI) for SIP functions

DESCRIPTION
This is a quick start guide: first of all, this GUI was written to make tests in the photonic field,
which means you’ll find many functions related to laser images.

As it is highly customizable, you can adapt it easily to your needs.

Here is a description of a few experiments and pictures:
1) laser1.jpg is a picture of a laser beam magnified by an microscope objective X10 and filtered by
a pinhole of a few microns (=spatial filter).
Operation > Profiles show the intensity profiles.
LaserBeam > Find Gaussian Profiles allows modelling of these profiles by a gaussian curve (laser
beam should have a gaussian profile). The beam waist can be deducted from these values.
The laser speckle can be smoothed by one (or several) median filtering(s) found in Operations:
this filter removes the high-frequency noise.

2) speckle1.png and speckle2.png are 2 images of an experiment in speckle interferometry: a
Michelson interferometer is created but the 1st mirror is replaced by a rugged metallic piece and
the second one is replaced by a metallic rule.
A CCD Camera saves a first image.
The rule is bent. The Camera take a second picture.
Try, Open > speckle1.png then Operations > substract 2 images (absolute value).
Fringes appear: between 2 dark fringes, the rule has moved from a distance equal to the light
wavelength/2 (here, 633/2=316.5 nm).
Normalization, filtering can help better visualization of the fringes.

3) pyramide wrapped.jpg is what is called a phased image: it was obtained by projecting fringes
on an object then on a reference plane.
The goal is to modelize the object in 3D. Operations > Profiles show that luminance is somewhat
proportional to altitude, but each time its value reach 255, there’s a jump and the luminance
restart from zero.
The phase unwrapping process is intended to remove these jumps.
PhasedImages > Unwrap linearly can do it with a very good quality image (like pyra-
mide wrapped.jpg).
A more complex algorithm is used by Unwrap by path following: it can unwrap more difficult
images. You can test with the merit function called Variance: it’s usually the best choice.
Be a bit patient when launching those functions: it takes some time (about 2 min on a recent
computer).

AUTHORS
Jocelyn DRUEL <jocelyn.druel1@libertysurf.fr>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
unwrapp, unwrapl, improfile

SIP Toolbox February 2004 1

MINMAX(1) MINMAX(1)

NAME
minmax − Min/Max algorithm for noise removal from images

SYNOPSIS
Output = minmax(Input, [NSteps, StepSize, Adapt, NonAdaptThreshold,

IntMaskSize, ExtMaskSize])

INPUT PARAMETERS
Input a matrix containing a gray-scale image to be filtered by min/max algorithm.

NSteps
number of steps to perform. Default is 10.

StepSize
the step increment for the iterative procedure. Default is 0.05.

Adapt
indicates if the algorithm should adapt itself to the local image gray level or if it considers
the NonAdaptThreshold value for defining light and dark regions. Default is FALSE.

NonAdaptThreshold
If Adapt is FALSE, intensity values greater than NonAdaptThreshold will be considered
as light regions.

IntMaskSize
Size of the Internal window in which curvature values will be taken into account for decid-
ing Min or Max curvature flow. Default is 1.

ExtMaskSize
Size of the External window in which curvature values will be taken into account for
deciding Min or Max curvature flow in the Adapt mode. Default is 0.

OUTPUT PARAMETERS
Output

a matrix containing the filtered image.

DESCRIPTION
Function minmax filters a gray-scale image using curvature-guided surface evolution. Object bor-
ders remain sharp while low-scale noise is removed.

EXAMPLE
M = gray imread(SIPDIR+’images/noisypoly.bmp’);
subplot(1,2,1);
imshow(M);
new M = minmax(M, NSteps=30);
subplot(1,2,2);
imshow(new M);

REFERENCES
"Image Processing via Level Set Curvature Flow ", Malladi, R., and Sethian, J.A., Proceedings of
the National Academy of Sciences, Vol. 92(15), pp. 7046-7050, July 1995
http://math.berkeley.edu/˜sethian/Movies/Movienoiseremoval.html

AUTHORS
Leandro Estrozi (lfestrozi@if.sc.usp.br)

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
curvature, curvature2d, mogrify

SIP Toolbox February 2003 1

1(September 2003) 1(September 2003)

NAME
mkfftfilter − builds 2D frequency-domain filters

SYNOPSIS
transfer function = mkfftfilter(image,filtername,frequency1[,frequency2])

INPUT PARAMETERS
image A gray-level image.

filtername
a string, the name can be ’binary’, ’butterworth1’, ’butterworth2’,

frequency1, frequency2
1st and 2nd cut-off frequencies which set the filter characteristics.

OUTPUT PARAMETERS
transfer function

is a matrix with values between 0 and 1. These values can then be applied on the fft spec-
trum of an image.

DESCRIPTION
This function gives some popular filters to be applied on the spectrum (fft) of an image.

The Fourier Transform gives informations about which frequencies are present in a signal (=spec-
trum).

A great property of the spectrum is that the original image can be reconstructed from it. Of
course, modifications in the spectrum will result in a modified image, but spectrum modifications
can be easier and more intuitive.

A combination of several filters is possible.

All these filters are cylindrical and act only on amplitude (not on phase). The following filters are
available (h is the trasfer function):

h=1/(1+(f/frequency1)ˆ(2*n)) n=1,2 or 3 for ’butterworth1’, ’butterworth2’ or ’butterworth3’.

’exp’: The exponential filter: h=exp(-(f/frequency1)ˆ1);

The gaussian filter which is a particular case of the exponential: h=exp(-(f/frequency1)ˆ2);

’trapeze’: h=1 if f<=frequency1 h=-(f-frequency2)/(frequency2-frequency1) h=0 if f>=fre-
quency2

EXAMPLE
stacksize(4e7); // increase the stack size because

// images are very much memory consumming

image=gray imread(SIPDIR+’images/ararauna.png’);
xset("window",0);xbasc();imshow(image);
xtitle("Original Image");

IM=fft(image,-1);

SIP Toolbox 1

1(September 2003) 1(September 2003)

//calculate the power spectrum
spectrum=real((IM).*conj(IM));
//for visualisation: the low frequencies are moved to the center of the image
//with sip fftshift,
//the use of log(spectrum+1) allows to observe great amplitude variations.
xset("window",1);xbasc();imshow(sip fftshift(log(spectrum+1)),[]);
xtitle("Power Spectrum");

//transfer function
h=mkfftfilter(image,’binary’,20);
xset("window",2);xbasc();imshow(h);
xtitle("Transfer Function");

IM2=IM.*sip fftshift(h);//spectrum modification

//reverse transform
im2=real(fft(IM2,1));
xset("window",3);xbasc();xselect();imshow(im2,[]);
xtitle("Low-pass binary filtering");

//High-pass filter
IM3=IM.*sip fftshift(1-h);//spectrum modification with (1-h)
im3=real(fft(IM3,1));
xset("window",4);xbasc();xselect();imshow(im3,[]);
xtitle("High-pass binary filtering");

//Combination of 2 filters
h1=mkfftfilter(image,’binary’,30);
h2=mkfftfilter(image,’binary’,5);
h=h1-h2;
IM4=IM.*sip fftshift(h);//spectrum modification
im4=real(fft(IM4,1));
xset("window",5);xbasc();xselect();imshow(im4,[]);
xtitle("Band-pass binary filtering");

AUTHOR
Jocelyn DRUEL <jocelyn.druel1@libertysurf.fr>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
fft, gsm2d, imconv

SIP Toolbox 2

MKFILTER(1) MKFILTER(1)

NAME
mkfilter − returns popular 2D convolution kernels

SYNOPSIS
K = mkfilter(name)

PARAMETERS
name a string, the name of the filter mask. May be ’sobel’, ’prewitt’, ’laplace1’, ´laplace2’,

’laplace3’,’sh1’ (or ’sharp1’), ’sh2’ (or ’sharp2’), ’low-pass’, ´mean’, ’circular’, ’circular-
mean’. In the future there will be more options.

K a 2D array containing the convolution kernel.

DESCRIPTION
mkfilter builds well-known 2D filter "masks" (kernels), such as sobel, prewitt, mean, etc. to be
used together with a function such as imconv.

K = mkfilter(’sobel’) returns a 3x3 edge-finding and y-derivative approximation filter. To find
vertical edges, use -K’.

K = mkfilter(’prewitt’) returns another 3x3 edge-finding and y-derivative approximation filter.
To find vertical edges, use -K’.

K = mkfilter(’laplace1’) returns a 3x3 kernel which shows points of an image where intensity is
varying quickly. The "laplacien" of an image is the two-dimensionnal second derivative. Because
images are discrete (and not continuous), the "laplacien" can only be approximated. The 3 differ-
ent kernels often used to estimate it are given by "laplace1", "laplace2" and "laplace3". These
kernels can be used to detect edges of an image.

K = mkfilter(’sh1’): "sharp enhancer". Returns a 3x3 kernel which renforce high frequencies of
the image: it accentuates the variations of a pixel compared to its neighbours. Problem: it
enhances the noise too (it may be useful to denoise the image before).

K = mkfilter(’sh2’) has the same effect than "sh1" but its coefficients are more powerfull.

K = mkfilter(’low-pass’) : this is a low-pass filter. The goal is inverse of sharp enhancer filters
- the image is smoothed. This kernel is only one of the possible kernels.

K = mkfilter(’mean’) : this is another low-pass filter. The mean value of the central pixel and
its neighbours is affected at the central pixel.

K = mkfilter(’circular’,rad) is an euclidean circular mask with radius "rad" pixels, whose ele-
ments are all 1.

K = mkfilter(’circular-mean’,rad) is a low pass filter, the same as ’circular’, but the matrix K
is divided by the number of 1-elements.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = imread(’tru.jpg’);
Img = im2gray(Img);
xbasc()
imshow(Img);
sob = mkfilter(’sobel’); // stamp effect

SIP Toolbox March 2003 1

MKFILTER(1) MKFILTER(1)

A = imconv(Img, sob);
xbasc()
imshow(A, [])

chdir(initial dir);

REMARKS
The Matlab equivalent to mkfilter is "fspecial".

REFERENCES
"Processamento Digital de Imagens", O. M. Filho and H. V. Neto, Brasport -- Rio de Janeiro, pp.
47-56.

"Algorithms for Image Processing and Computer Vision", J.R. Parker, Wiley, chapter 1.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>
Jocelyn Druel <jocelyn.druel1@libertysurf.fr>
Leandro Estrozi <lfestrozi@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
imconv, edge

SIP Toolbox March 2003 2

MOGRIFY(1) MOGRIFY(1)

NAME
mogrify − filter, rotate, zoom, equalization, and MANY more.

SYNOPSIS
[imout (,map)] = mogrify(im, argv);
[imout (,map)] = mogrify(imRGB, argv);
[imout (,map)] = mogrify(index, colormap, argv);

INPUT PARAMETERS
im binary or grayscale image in the 0-1 range

imRGB
truecolor image represented as a 3D array, in the 0-1 range.

index a 2D array in the 1-NC range, where NC is the number of colors.

colormap
an (NCx3) matrix in the 0-1 range.

argv (argument vector), a string vector, row or column, containing image processing com-
mands. See the section "ARGV ARGUMENT" bellow for a listing of the available
options. The "EXAMPLE" bellow demonstrates how to use this argument.

OUTPUT PARAMETERS
imout For truecolor images, this is a MxNx3 matrix in the 0-1 range. For binary images, image

is a MxNx1 matrix (0=black and 1=white). For grayscale images, this is an MxN matrix
in the 0-1 range. For indexed images, this is an MxN matrix in the 1-NC range, where
NC is the number of colors.

map NCx3 matrix containing the image colormap, qhere Nc is the number of colors. Entries
range from 0 to 1.

DESCRIPTION
Function mogrify does many image processing operations. It is a direct C-language interface to
ImageMagick, providing the same functinality as the command-line "mogrify" utility. The differ-
ence is that SIP’s mogrify acts upon scilab matrices instead of image files, and, therefore, is con-
siderably faster. Please see the section "ARGV ARGUMENT" bellow for details on how the
parameter argv is built.

EXAMPLE
Please follow the TransMogrify demo:

exec(SIPDEMO);

NEWS
mogrify is now working with truecolor and paletted images.

ARGV ARGUMENT
In this section, angle brackets ("<>") enclose variables and curly brackets ("{}") enclose optional
parameters. For example, "-fuzz <distance>{%}" means you can use the option [’-fuzz’,’10’] or
[’-fuzz’, ’2%’].

-affine <matrix>
drawing transform matrix

This option provides a transform matrix {sx,rx,ry,sy,tx,ty} for use by subsequent -draw
or -transform option.

SIP Toolbox September 2002 1

MOGRIFY(1) MOGRIFY(1)

-antialias
remove pixel aliasing

By default antialiasing algorithms are used when drawing objects (e.g. lines) or rendering
vector formats (e.g. WMF and Postscript). Use +antialias to disable use of antialiasing
algorithms. Reasons to disable antialiasing include avoiding increasing colors in the image,
or improving rendering speed.

-background <color>
the background color

The color is specified using the format described in the "Color Names" section of X(1).

-blur <radius>x<sigma>
blur the image with a Gaussian operator

Blur with the given radius and standard deviation (sigma). It is better if the radius be
greater than sigma, but the larger it is, the slower is the processing. If a radius equal to 0
is passed, then mogrify uses the optimal radius.

-border <width>x<height>
surround the image with a border of color

See -geometry for details about the geometry specification.

-bordercolor <color>
the border color

The color is specified using the format described in the "Color Names" section of X(1).

-channel <type>
the type of channel

Choose from: Red, Green, Blue, Cyan, Magenta, Yellow, or Black.

Use this option to extract a particular channel from the image.

-charcoal <factor>
simulate a charcoal drawing

-colorize <value>
colorize the image with the pen color

Specify the amount of colorization as a percentage. You can apply separate colorization
values to the red, green, and blue channels of the image with a colorization value list
delineated with slashes (e.g. 0/0/50).

-colorspace <value>
the type of colorspace

Choices are: GRAY, OHTA, RGB, Transparent, XYZ, YCbCr, YIQ, YPbPr,
YUV, or CMYK.

Color reduction, by default, takes place in the RGB color space. Empirical evidence sug-
gests that distances in color spaces such as YUV or YIQ correspond to perceptual color
differences more closely than do distances in RGB space. These color spaces may give
better results when color reducing an image. Refer to quantize for more details.

The Transparent color space behaves uniquely in that it preserves the matte channel of

SIP Toolbox September 2002 2

MOGRIFY(1) MOGRIFY(1)

the image if it exists.

The -colors or -monochrome option is required for this option to take effect.

-contrast
enhance or reduce the image contrast

This option enhances the intensity differences between the lighter and darker elements of
the image. Use -contrast to enhance the image or +contrast to reduce the image con-
trast.

-crop <width>x<height>{+-}<x>{+-}<y>{%}
preferred size and location of the cropped image

See -geometry for details about the geometry specification.

The width and height give the size of the image that remains after cropping, and x and y
are offsets that give the location of the top left corner of the cropped image with respect
to the original image. To specify the amount to be removed, use -shave instead.

To specify a percentage width or height to be removed instead, append %. For example to
crop the image by ten percent (five percent on each side of the image), use -crop 10%.

If the x and y offsets are present, a single image is generated, consisting of the pixels from
the cropping region. The offsets specify the location of the upper left corner of the crop-
ping region measured downward and rightward with respect to the upper left corner of
the image. If the -gravity option is present with NorthEast, East, or SouthEast gravity,
it gives the distance leftward from the right edge of the image to the right edge of the
cropping region. Similarly, if the -gravity option is present with SouthWest, South, or
SouthEast gravity, the distance is measured upward between the bottom edges.

If the x and y offsets are omitted, a set of tiles of the specified geometry, covering the
entire input image, is generated. The rightmost tiles and the bottom tiles are smaller if
the specified geometry extends beyond the dimensions of the input image.

-cycle <amount>
displace image colormap by amount

Amount defines the number of positions each colormap entry is shifted.

-debug
enable debug printout

-despeckle
reduce the speckles within an image

-dither
apply Floyd/Steinberg error diffusion to the image

The basic strategy of dithering is to trade intensity resolution for spatial resolution by
averaging the intensities of several neighboring pixels. Images which suffer from severe
contouring when reducing colors can be improved with this option.

The -colors or -monochrome option is required for this option to take effect.

Use +dither to turn off dithering and to render PostScript without text or graphic alias-
ing.

SIP Toolbox September 2002 3

MOGRIFY(1) MOGRIFY(1)

-draw <string>
annotate an image with one or more graphic primitives

Use this option to annotate an image with one or more graphic primitives. The primitives
include shapes, text, transformations, and pixel operations. The shape primitives are

point x,y
line x0,y0 x1,y1
rectangle x0,y0 x1,y1
roundRectangle x0,y0 x1,y1 wc,hc
arc x0,y0 x1,y1 a0,a1
ellipse x0,y0 rx,ry a0,a1
circle x0,y0 x1,y1
polyline x0,y0 ... xn,yn
polygon x0,y0 ... xn,yn
Bezier x0,y0 ... xn,yn
path path specification
image operator x0,y0 w,h filename

The text primitive is

text x0,y0 string

The transformation primitives are

rotate degrees
translate dx,dy
scale sx,sy
skewX degrees
skewY degrees

The pixel operation primitives are

color x0,y0 method

The shape primitives are drawn in the color specified in the preceding -stroke option.
Except for the line and point primitives, they are filled with the color specified in the
preceding -fill option. For unfilled shapes, use -fill none.

Point requires a single coordinate.

Line requires a start and end coordinate.

Rectangle expects an upper left and lower right coordinate.

RoundRectangle has the upper left and lower right coordinates and the width and
height of the corners.

Circle has a center coordinate and a coordinate for the outer edge.

Use Arc to circumscribe an arc within a rectangle. Arcs require a start and end point as
well as the degree of rotation (e.g. 130,30 200,100 45,90).

Use Ellipse to draw a partial ellipse centered at the given point with the x-axis and y-

SIP Toolbox September 2002 4

MOGRIFY(1) MOGRIFY(1)

axis radius and start and end of arc in degrees (e.g. 100,100 100,150 0,360).

Finally, polyline and polygon require three or more coordinates to define its boundaries.
Coordinates are integers separated by an optional comma. For example, to define a circle
centered at 100,100 that extends to 150,150 use:

[’-draw’; ’circle 100,100 150,150’]

Paths (See Paths) represent an outline of an object which is defined in terms of moveto
(set a new current point), lineto (draw a straight line), curveto (draw a curve using a
cubic Bezier), arc (elliptical or circular arc) and closepath (close the current shape by
drawing a line to the last moveto) elements. Compound paths (i.e., a path with subpaths,
each consisting of a single moveto followed by one or more line or curve operations) are
possible to allow effects such as "donut holes" in objects.

Use image to composite an image with another image. Follow the image keyword with
the composite operator, image location, image size, and filename:

[’-draw’; ’image Over 100,100 225,225 image.jpg’]

You can use 0,0 for the image size, which means to use the actual dimensions found in the
image header. Otherwise, it will be scaled to the given dimensions.

Use text to annotate an image with text. Follow the text coordinates with a string. If the
string has embedded spaces, enclose it in double quotes. Optionally you can include the
image filename, type, width, height, or other image attribute by embedding special format
character. See -comment for details.

For example,

[’-draw’; ’text 100,100 ""%wx%h""’]

annotates the image with 512x480 for an image whose width is 512 and height is 480.

If the first character of string is @, the text is read from a file titled by the remaining
characters in the string.

Rotate rotates subsequent shape primitives and text primitives about the origin of the
main image. If the -region option precedes the -draw option, the origen for transforma-
tions is the upper left corner of the region.

Translate translates them.

Scale scales them.

SkewX and SkewY skew them with respect to the origen of the main image or the
region.

The transformations modify the current affine matrix, which is initialized from the initial
affine matrix defined by the -affine option. Transformations are cumulative within the
-draw option. The initial affine matrix is not affected; that matrix is only changed by
the appearance of another -affine option. If another -draw option appears, the current
affine matrix is reinitialized from the initial affine matrix.

SIP Toolbox September 2002 5

MOGRIFY(1) MOGRIFY(1)

Use color to change the color of a pixel to the fill color (see -fill). Follow the pixel coordi-
nate with a method:

point
replace
floodfill
filltoborder
reset

Consider the target pixel as that specified by your coordinate. The point method recolors
the target pixel. The replace method recolors any pixel that matches the color of the tar-
get pixel. Floodfill recolors any pixel that matches the color of the target pixel and is a
neighbor, whereas filltoborder recolors any neighbor pixel that is not the border color.
Finally, reset recolors all pixels.

You can set the primitive color, font, and font bounding box color with -fill, -font, and
-box respectively. Options are processed in the argv order so be sure to use these options
before the -draw option.

-edge <radius>
detect edges within an image

-emboss
emboss an image

-encoding <type>
specify the text encoding

Choose from AdobeCustom, AdobeExpert, AdobeStandard, AppleRoman, BIG5, GB2312,
Latin 2, None, SJIScode, Symbol, Unicode, Wansung.

-enhance
apply a digital filter to enhance a noisy image

-equalize
perform histogram equalization to the image

-fill <color>
color to use when filling a graphic primitive

The color is specified using the format described in the "Color Names" section of X(1).

See -draw for further details.

-filter <type>
use this type of filter when resizing an image

Use this option to affect the resizing operation of an image (see -geometry). Choose
from these filters:

Point
Box
Triangle
Hermite
Hanning
Hamming
Blackman

SIP Toolbox September 2002 6

MOGRIFY(1) MOGRIFY(1)

Gaussian
Quadratic
Cubic
Catrom
Mitchell
Lanczos
Bessel
Sinc

The default filter is Lanczos

-flip create a "mirror image"

reflect the scanlines in the vertical direction.

-flop create a "mirror image"

reflect the scanlines in the horizontal direction.

-font <name>
use this font when annotating the image with text

You can tag a font to specify whether it is a PostScript, TrueType, or OPTION1 font.
For example, Arial.ttf is a TrueType font, ps:helvetica is PostScript, and x:fixed is
OPTION1.

-foreground <color>
define the foreground color

The color is specified using the format described in the "Color Names" section of X(1).

-frame <width>x<height>+<outer bevel width>+<inner bevel width>
surround the image with an ornamental border

See -geometry for details about the geometry specification. The -frame option is not
affected by the -gravity option.

The color of the border is specified with the -mattecolor command line option.

-frame
include the X window frame in the imported image

-fuzz <distance>{%}
colors within this distance are considered equal

A number of algorithms search for a target color. By default the color must be exact. Use
this option to match colors that are close to the target color in RGB space. For example,
if you want to automatically trim the edges of an image with -trim but the image was
scanned and the target background color may differ by a small amount. This option can
account for these differences.

The distance can be in absolute intensity units or, by appending "%", as a percentage of
the maximum possible intensity.

-gamma <value>
level of gamma correction

The same color image displayed on two different workstations may look different due to
differences in the display monitor. Use gamma correction to adjust for this color

SIP Toolbox September 2002 7

MOGRIFY(1) MOGRIFY(1)

difference. Reasonable values extend from 0.8 to 2.3.

You can apply separate gamma values to the red, green, and blue channels of the image
with a gamma value list delineated with slashes (e.g., 1.7/2.3/1.2).

-Gaussian <radius>x<sigma>
blur the image with a Gaussian operator

Use the given radius and standard deviation (sigma).

-geometry <width>x<height>{+-}<x>{+-}<y>{%}{@} {!}{<}{>}
preferred size and location of the Image window.

By default, the window size is the image size and the location is chosen by you when it is
mapped.

By default, the width and height are maximum values. That is, the image is expanded or
contracted to fit the width and height value while maintaining the aspect ratio of the
image. Append an exclamation point to the geometry to force the image size to exactly the
size you specify. For example, if you specify 640x480! the image width is set to 640 pixels
and height to 480.

If only the width is specified, the width assumes the value and the height is chosen to
maintain the aspect ratio of the image. Similarly, if only the height is specified (e.g.,
-geometry x256), the width is chosen to maintain the aspect ratio.

To specify a percentage width or height instead, append %. The image size is multiplied
by the width and height percentages to obtain the final image dimensions. To increase the
size of an image, use a value greater than 100 (e.g. 125%). To decrease an image’s size,
use a percentage less than 100.

Use @ to specify the maximum area in pixels of an image.

Use > to change the dimensions of the image only if its width or height exceeds the geom-
etry specification. < resizes the image only if both of its dimensions are less than the
geometry specification. For Example, if you specify ’640x480>’ and the image size is
256x256, the image size does not change. However, if the image is 512x512 or 1024x1024,
it is resized to 480x480. Enclose the geometry specification in quotation marks to prevent
the < or > from being interpreted by your shell as a file redirection.

-geometry is synonymous with -resize and specifies the size of the output image. The
offsets, if present, are ignored.

-gravity <type>
direction primitive gravitates to when annotating the image.

Choices are: NorthWest, North, NorthEast, West, Center, East, SouthWest, South, South-
East.

The direction you choose specifies where to position the text or other graphic primitive
when annotating the image. For example Center gravity forces the text to be centered
within the image. By default, the image gravity is NorthWest. See -draw for more details
about graphic primitives.

SIP Toolbox September 2002 8

MOGRIFY(1) MOGRIFY(1)

The -gravity option is also used in concert with the -geometry option and other options
that take <geometry> as a parameter, such as the -crop option. See -geometry for
details of how the -gravity option interacts with the <x> and <y> parameters of a
geometry specification.

-implode <factor>
implode image pixels about the center. It is a real number.

-interlace <type>
the type of interlacing scheme

Choices are: None, Line, Plane, or Partition. The default is None.

This option is used to specify the type of interlacing scheme for raw image formats such
as RGB or YUV.

None means do not interlace (RGBRGBRGBRGBRGBRGB...),

Line uses scanline interlacing (RRR...GGG...BBB...RRR...GGG...BBB...), and

Plane uses plane interlacing (RRRRRR...GGGGGG...BBBBBB...).

Partition is like plane except the different planes are saved to individual files (e.g.
image.R, image.G, and image.B).

Use Line or Plane to create an interlaced PNG or GIF or progressive JPEG
image.

-lat <radius>x<sigma>{+-}<offset>{%}
perform local adaptive thresholding

Perform local adaptive thresholding using the specified radius, sigma, and offset. The off-
set is a distance in sample space from the mean, as an absolute integer ranging from 0 to
the maximum sample value or as a percentage. For reasonable results, radius should be
larger than sigma. Use a radius of 0 to have the method select a suitable radius.

-level <value>
adjust the level of image contrast

Give three point values delineated with commas: black, mid, and white (e.g. 10,1.0,65000).
The white and black points range from 0 to MaxRGB and mid ranges from 0 to 10.

-linewidth
the line width for subsequent draw operations

-mask <filename>
Specify a clipping mask

The image read from the file is used as a clipping mask. It must have the same dimen-
sions as the image being masked.

If the mask image contains an opacity channel, the opacity of each pixel is used to define
the mask. Otherwise, the intensity (gray level) of each pixel is used.

Use +mask to remove the clipping mask.

It is not necessary to use -clip to activate the mask; -clip is implied by -mask.

SIP Toolbox September 2002 9

MOGRIFY(1) MOGRIFY(1)

-median <radius>
apply a median filter to the image

-monochrome
transform the image to black and white

-negate
replace every pixel with its complementary color

The red, green, and blue intensities of an image are negated. White becomes black, yel-
low becomes blue, etc. Use +negate to only negate the grayscale pixels of the image.

-noise <radius|type>
add or reduce noise in an image

The principal function of noise peak elimination filter is to smooth the objects within an
image without losing edge information and without creating undesired structures. The
central idea of the algorithm is to replace a pixel with its next neighbor in value within a
pixel window, if this pixel has been found to be noise. A pixel is defined as noise if and
only if this pixel is a maximum or minimum within the pixel window.

Use radius to specify the width of the neighborhood.

Use +noise followed by a noise type to add noise to an image. Choose from these noise
types:

Uniform
Gaussian
Multiplicative
Impulse
Laplacian
Poisson

-normalize
transform image to span the full range of color values

This is a contrast enhancement technique.

-opaque <color>
change this color to the pen color within the image

The color is specified using the format described in the "Color Names" section of X(1).

-paint <radius>
simulate an oil painting

Each pixel is replaced by the most frequent color in a circular neighborhood whose width
is specified with radius.

-raise <width>x<height>
lighten or darken image edges

This will create a 3-D effect. See -geometry for details details about the geometry speci-
fication. Offsets are not used.

Use -raise to create a raised effect, otherwise use +raise.

SIP Toolbox September 2002 10

MOGRIFY(1) MOGRIFY(1)

-region <width>x<height>{+-}<x>{+-}<y>
apply options to a portion of the image

The x and y offsets are treated in the same manner as in -crop.

-resize <width>x<height>{%}{@}{!}{<}{>}
resize an image

This is an alias for the -geometry option and it behaves in the same manner. If the -fil-
ter option precedes the -resize option, the specified filter is used.

There are some exceptions:

When used as a composite option, -resize conveys the preferred size of the output image,
while -geometry conveys the size and placement of the composite image within the main
image.

When used as a montage option, -resize conveys the preferred size of the montage, while
-geometry conveys information about the tiles.

-roll {+-}<x>{+-}<y>
roll an image vertically or horizontally

See -geometry for details the geometry specification. The x and y offsets are not
affected by the -gravity option.

A negative x offset rolls the image left-to-right. A negative y offset rolls the image top-to-
bottom.

-rotate <degrees>{<}{>}
apply Paeth image rotation to the image

Use > to rotate the image only if its width exceeds the height. < rotates the image only
if its width is less than the height. For example, if you specify -rotate "-90>" and the
image size is 480x640, the image is not rotated. However, if the image is 640x480, it is
rotated by -90 degrees. If you use > or <, enclose it in quotation marks to prevent it
from being misinterpreted as a file redirection.

Empty triangles left over from rotating the image are filled with the color defined as
background (class backgroundColor). See X(1) for details.

-sample <geometry>
scale image with pixel sampling

See -geometry for details about the geometry specification. -sample ignores the -filter
selection if the -filter option is present. Offsets, if present in the geometry string, are
ignored, and the -gravity option has no effect.

-sampling factor <horizontal factor>x<vertical factor>
sampling factors used by JPEG or MPEG-2 encoder and YUV decoder/encoder.

This option specifies the sampling factors to be used by the JPEG encoder for chroma
downsampling. If this option is omitted, the JPEG library will use its own default values.
When reading or writing the YUV format and when writing the M2V (MPEG-2) format,
use -sampling factor 2x1 to specify the 4:2:2 downsampling method.

SIP Toolbox September 2002 11

MOGRIFY(1) MOGRIFY(1)

-scale <geometry>
scale the image.

See -geometry for details about the geometry specification. -scale uses a simpler, faster
algorithm, and it ignores the -filter selection if the -filter option is present. Offsets, if
present in the geometry string, are ignored, and the -gravity option has no effect.

-seed <value>
pseudo-random number generator seed value

-segment <cluster threshold>x<smoothing threshold>
segment an image

Segment an image by analyzing the histograms of the color components and identifying
units that are homogeneous with the fuzzy c-means technique.

Specify cluster threshold as the number of pixels in each cluster must exceed the the clus-
ter threshold to be considered valid. Smoothing threshold eliminates noise in the second
derivative of the histogram. As the value is increased, you can expect a smoother second
derivative. The default is 1.5. See "Image Segmentation", below, for details.

-shade <azimuth>x<elevation>
shade the image using a distant light source

Specify azimuth and elevation as the position of the light source. Use +shade to return
the shading results as a grayscale image.

-sharpen <radius>x<sigma>
sharpen the image

Use a Gaussian operator of the given radius and standard deviation (sigma).

-shave <width>x<height>
shave pixels from the image edges

Specify the width of the region to be removed from both sides of the image and the height
of the regions to be removed from top and bottom.

-shear <x degrees>x<y degrees>
shear the image along the X or Y axis

Use the specified positive or negative shear angle.

Shearing slides one edge of an image along the X or Y axis, creating a parallelogram. An
X direction shear slides an edge along the X axis, while a Y direction shear slides an edge
along the Y axis. The amount of the shear is controlled by a shear angle. For X direction
shears, x degrees is measured relative to the Y axis, and similarly, for Y direction shears y
degrees is measured relative to the X axis.

Empty triangles left over from shearing the image are filled with the color defined as
background (class backgroundColor). See X(1) for details.

-solarize <factor>
negate all pixels above the threshold level

Specify factor as the percent threshold of the intensity (0 - 99.9%).

This option produces a solarization effect seen when exposing a photographic film to light
during the development process.

SIP Toolbox September 2002 12

MOGRIFY(1) MOGRIFY(1)

-spread <amount>
displace image pixels by a random amount

Amount defines the size of the neighborhood around each pixel to choose a candidate
pixel to swap.

-stroke <color>
color to use when stroking a graphic primitive

The color is specified using the format described in the "Color Names" section of X(1).

See -draw for further details.

-strokewidth <value>
set the stroke width

See -draw for further details.

-swirl <degrees>
swirl image pixels about the center

Degrees defines the tightness of the swirl.

-threshold <value>
threshold the image Create a bi-level image such that any pixel intensity that is equal or
exceeds the threshold is reassigned the maximum intensity otherwise the minimum inten-
sity.

-tile <geometry>
layout of images [montage]

-transform
transform the image

This option applies the transformation matrix from a previous -affine option.

mogrify(img, ’-affine 2,2,-2,2,0,0 -transform bird.ppm’);

-treedepth <value>
tree depth for the color reduction algorithm

Normally, this integer value is zero or one. A zero or one tells display to choose an opti-
mal tree depth for the color reduction algorithm

An optimal depth generally allows the best representation of the source image with the
fastest computational speed and the least amount of memory. However, the default depth
is inappropriate for some images. To assure the best representation, try values between 2
and 8 for this parameter. Refer to quantize for more details.

The -colors or -monochrome option is required for this option to take effect.

-trim trim an image

This option removes any edges that are exactly the same color as the corner pixels. Use
-fuzz to make -trim remove edges that are nearly the same color as the corner pixels.

-unsharp <radius>x<sigma>
sharpen the image with an unsharp mask operator

SIP Toolbox September 2002 13

MOGRIFY(1) MOGRIFY(1)

Use the given radius and standard deviation (sigma).

-wave <amplitude>x<wavelength> alter an image along a sine wave

Specify amplitude and wavelength of the wave.

IMAGE SEGMENTATION
Use -segment to segment an image by analyzing the histograms of the color components and
identifying units that are homogeneous with the fuzzy c-means technique. The scale-space filter
analyzes the histograms of the three color components of the image and identifies a set of classes.
The extents of each class is used to coarsely segment the image with thresholding. The color asso-
ciated with each class is determined by the mean color of all pixels within the extents of a particu-
lar class. Finally, any unclassified pixels are assigned to the closest class with the fuzzy c-means
technique.

The fuzzy c-Means algorithm can be summarized as follows:

Build a histogram, one for each color component of the image.

For each histogram, successively apply the scale-space filter and build an interval tree of zero
crossings in the second derivative at each scale. Analyze this scale-space "fingerprint" to deter-
mine which peaks or valleys in the histogram are most predominant.

The fingerprint defines intervals on the axis of the histogram. Each interval contains either a min-
ima or a maxima in the original signal. If each color component lies within the maxima interval,
that pixel is considered "classified" and is assigned an unique class number.

Any pixel that fails to be classified in the above thresholding pass is classified using the fuzzy c-
Means technique. It is assigned to one of the classes discovered in the histogram analysis phase.

The fuzzy c-Means technique attempts to cluster a pixel by finding the local minima of the gener-
alized within group sum of squared error objective function. A pixel is assigned to the closest class
of which the fuzzy membership has a maximum value.

For additional information see: Young Won Lim, Sang Uk Lee, ‘‘On The Color Image Seg-
mentation Algorithm Based on the Thresholding and the Fuzzy c-Means Techniques’’,
Pattern Recognition, Volume 23, Number 9, pages 935-952, 1990.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
imread, imwrite, imfinfo

SIP Toolbox September 2002 14

NORMAL(1) NORMAL(1)

NAME
normal − normalize array to a given range

SYNOPSIS
N = normal(M, upper, lower)

PARAMETERS
M array

N normalized array

upper and lower
range limits of N. lower defaults to 0. upper defaults to 1.

DESCRIPTION
Function normal normalizes a matrix M to occupy lower-upper range. The intent of this function
is to be a shortcut to a simple but often used operation.

N = normal(M) normalizes N to 0-1 range.

N = normal(M,upper) normalizes N to 0-upper range.

N = normal(M,lower,upper) normalizes N to lower-upper range.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = gray imread(’gra.jpg’);
mini(Img)
maxi(Img)
N = normal(Img,255);
mini(N)
maxi(N)

chdir(initial dir);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
imshow

SIP Toolbox January 2002 1

NTSC2RGB(1) NTSC2RGB(1)

NAME
ntsc2rgb − converts from YIQ to RGB colorspace

SYNOPSIS
RGB = ntsc2rgb(YIQ)

PARAMETERS
RGB A RGB image (M x N x 3) in 0-1 range or a RGB colormap (M x 3) in 0-1 range

YIQ A YIQ image (M x N x 3) in 0-1 range or a YIQ colormap (M x 3) in 0-1 range

DESCRIPTION
ntsc2rgb(YIQ) converts an YIQ image or colormap from YIQ to RGB colorspace. The YIQ
model is used in NTSC and European TV’s. It is useful for b&w and color compatibility, since the
cromaticity (I and Q) and luminance (Y) are conveniently isolated. ntsc2rgb(YIQ) uses the fol-
lowing operation to convert each YIQ triplet:

! R ! ! 1.000 0.956 0.621 ! ! Y !
! G ! = ! 1.000 -0.272 -0.647 ! * ! I !
! B ! ! 1.000 -1.105 1.702 ! ! Q !

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

rgb = imread(’tru.jpg’); // RGB colorspace 0-1
imshow(rgb);
yiq = rgb2ntsc(rgb); // YIQ colorspace 0-1
yiq(:,:,2) = yiq(:,:,2) /4; // Decrease chromaticity
yiq(:,:,3) = yiq(:,:,3) /4;
rgb = ntsc2rgb(yiq);
imshow(rgb);

chdir(initial dir);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
rgb2ntsc, im2gray

SIP Toolbox January 2002 1

PERCOL(1) PERCOL(1)

NAME
percol − test if binary image is percolated

SYNOPSIS
p = percol(img [,direction])

PARAMETERS
img an image in which 0 is considered background, while positive values are considered object

(also called site).

direction
1 if percolation is to be tested horizontally; 0 if it is to be tested vertically

p 1 if image is percolated; 0 otherwise.

DESCRIPTION
Function percol tests if an image is 4-connected from side to side. This is useful for analysing
images comming from site percolation simulations. The percol routine has the advantage to be
implemented in the C language.

EXAMPLE
p=0.02;
a = 1*(rand(10,10) <= p)
while (˜percol(a)) // test the image if one side connects to the other

p = p+0.02;
a = 1*(rand(10,10) <= p);

end

// now, surely, the image is connected side-to-side (i.e., it has percolated)
xbasc();
imshow(1-a,2); // 1 is displayed as black

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
xgetmouse, xclick, locate

SIP Toolbox September 2002 1

PERIM(1) PERIM(1)

NAME
perim − perimeter of binary shape

SYNOPSIS
p = perim(Img)

PARAMETERS
Img binary array, 1 for object and 0 for background (double precision)

p approximate perimeter of the shape inside Img

DESCRIPTION
This is a simple routine to measure the perimeter of a 2D shape. It assumes border pixels as a
polygonal line: adjacent border pixels has measure size 1 or sqrt(2).

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = imread(’star.bmp’);
xbasc()
imshow(Img,2);
p = perim(Img)

chdir(initial dir);

BUGS AND SHORTCOMINGS
Images are stored in double precision matrices. Hopefully, the next release will make usage of inte-
ger types.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
follow, bwborder, edge, im2bw

SIP Toolbox MAY 2003 1

PIFILTER(December 2003) PIFILTER(December 2003)

NAME
pifilter − pi filter for phased images

SYNOPSIS
filtered image = pifilter(image[,filter name])

PARAMETERS
image A gray image (normally a phased image).

filter name
A low-pass filter. It can be ´mean’ or ’low-pass’ (see mkfilter). Default is ’mean’.

DESCRIPTION
Filters a phased image before unwrapping it. The purpose is to keep the phase jumps sharp: a
convolution by a low-pass kernel would be catastrophic, because it would smooth these jumps,
causing the demodulation algorithm to fail.

Principle:
1) We calculate the sinus and cosinus of the phase
2) We apply a convolution filtering on each component
3) We get the phase again with an atan

This function uses the mkfilter and imconv functions. Reasonable kernels are: ’low-pass’ and
’mean’. A high-pass filter would make no sense as it would burst noise !

You can use pifilter for ordinary grayscale images to smooth them without loosing the edges. This
filter is similar to the median filter, but will leave edges even stronger. However, the noise will
more often not be removed; just attenuated.

EXAMPLE
a=gray imread(SIPDIR+’images/photonics/pyramide noisy.jpg’);
xset("window",0);xbasc();
imshow(a);
improfile(a);//to visualise profiles
b=pifilter(a);
xset("window",1);xbasc();
imshow(b);
improfile(b);//jumps are still well visible and other parts are smoothed

REFERENCES:
"Techniques automatiques de raccordement de phase" by David Venet
Ecole Federale de Lausanne (1995-96)

AUTHORS
Jocelyn DRUEL <jocelyn.druel1@libertysurf.fr>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
unwrapl,unwrapp,mkfilter,imconv

SIP Toolbox 1

POLEDETECTION(January 2004) POLEDETECTION(January 2004)

NAME
poledetection − poles (or residues) detection in a wrapped phased image

SYNOPSIS
poles = poledetection(image[,threshold])

PARAMETERS
image The gray-level image containing the wrapped phase.

threshold
The minimum difference betwwen 2 pixels to consider that a phase jump occurs.
Default=0.5

poles A matrix: elements with the value zero are consistent points, others (positive or negative)
are residus (or poles).

DESCRIPTION
Ideally, phase unwrapping should not depend on the path followed to unwrapp. So we consider a
small loop of 4 adjacents pixels. We decide that there’s a phase jump if the difference between 2
neighbours is superior to a threshold (=0.5 by default) We count the number of jumps when we
follow the loop clockwise and anticlockwise. Because of noise, we observe that these numbers are
differents in certain locations of the image. The phase is called "inconsistent" in these points.
Unwrapping process is very uncertain there.
These poles (or residues) can be marked so that the unwrapping process ignores them, or can be
used to create branches in residue-cut tree algorithms.

EXAMPLE
stacksize(4e7);

pw=gray imread(SIPDIR+’images/photonics/pyramide noisy.jpg’); //phase wrapped
xset("window",0);xbasc();imshow(pw);

poles=abs(poledetection(pw));//locate residues, no matter of the sign
xset("window",1);xbasc();imshow(poles,[]);//bright pixels
// show places where phase jumps are very uncertains

//Avoid unwrapping these points:
mf=imvariance(pw);//calculate a "merit function"
//mark bad pixels as visited (merit function=3000):
//you can comment this line if you want to compare results with and without
//poledetection
mf(find(poles>0))=3000;

//phase unwrapping:
puw=unwrapp(pw,mf);
xset("window",2);xbasc();imshow(puw,[]);

REFERENCES
Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis
algorithms by Zebker and Lu, Journal of Optical Society Am. A, vol 15, N.3, March 1998

Satellite radar interferometry: two-dimensional phase unwrapping by Goldstein, Zebker, Werner in
Radio Science, vol 23, number 4, pages 713-720, july-august 1988

SIP Toolbox 1

POLEDETECTION(January 2004) POLEDETECTION(January 2004)

AUTHORS
Jocelyn DRUEL <jocelyn.druel1@libertysurf.fr>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
unwrapl, unwrapp, imvariance

SIP Toolbox 2

RGB2NTSC(1) RGB2NTSC(1)

NAME
rgb2ntsc − converts from RGB to YIQ colorspace

SYNOPSIS
YIQ = rgb2ntsc(RGB)

PARAMETERS
RGB A RGB image (M x N x 3) in 0-1 range or a RGB colormap (M x 3) in 0-1 range

YIQ A YIQ image (M x N x 3) in 0-1 range or a YIQ colormap (M x 3) in 0-1 range

DESCRIPTION
rgb2ntsc(RGB) converts an RGB image or colormap from RGB to YIQ colorspace. The YIQ
model is used in NTSC and European TV’s. It is useful for b&w and color compatibility, since the
cromaticity (I and Q) and luminance (Y) are conveniently isolated. rgb2ntsc(RGB) uses the fol-
lowing operation to convert each RGB triplet:

! Y ! ! 0.299 0.587 0.114 ! ! R !
! I ! = ! 0.596 -0.274 -0.322 ! * ! G !
! Q ! ! 0.212 -0.523 0.311 ! ! B !

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

rgb = imread(’tru.jpg’); // RGB colorspace, 0-1 range
imshow(rgb);
yiq = rgb2ntsc(rgb); // YIQ colorspace, 0-1 range
yiq(:,:,2) = yiq(:,:,2) /4; // Decrease chromaticity
yiq(:,:,3) = yiq(:,:,3) /4;
rgb = ntsc2rgb(yiq);
imshow(rgb);

chdir(initial dir);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
ntsc2rgb, im2gray

SIP Toolbox January 2002 1

SIP FFTSHIFT(1) SIP FFTSHIFT(1)

NAME
sip fftshift − swap arrays (used with fft)

SYNOPSIS
Y = sip fftshift(X)

PARAMETERS
X and Y

double vectors

DESCRIPTION
sip fftshift(X) swaps the left and right halves of X.

sip fftshift is a substitute for mtlb fftshift, a Scilab function which is in FRACLAB contribution.
We provide it here, since its necessary for many image processing tasks.

REMARKS
fftshift is now present in Scilab CVS. sip fftshift is provided only for those versions of scilab that
do not have fftshift.

There are optional arguments not documented, as well as other features of this function that we
don’t cover in this manpage.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>, with help from Scilab Group <Scilab@inria.fr>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
fft, FRACLAB toolbox

SIP Toolbox January 2002 1

SKEL(1) SKEL(1)

NAME
skel − skeletonization, thinning, Medial Axis Transform

SYNOPSIS
[skl,dt,lbl] = skel(img [,side, algorithm])

PARAMETERS
img Binary image containing one or more binary shapes. (foreground == 1, background ==

0), One-pixel-wide regions are ignored (temporary limitation).

side ´interior´ if only internal skeleton is desired (DEFAULT);

´exterior´ if only external skeleton is desired;

´both´ if the background and foreground skeleton must be computed at the same time.

algorithm
´fast euclidean´ (DEFAULT) will perform a fast O(n) algorithm using the euclidean met-
ric. For large and thick shapes, there may be a few small errors, which are dispensible for
most practical applications.

´exact euclidean´ will perform an exact euclidean algorithm that is very much slower.

skl The multiscale skeleton image. This is a grayscale image, which may be thresholded to
yield a skeleton with varying levels of detail. The greater the threshold, the cleaner is the
skeleton. A threshold level of 5 will give a usual skeleton similar to the one obtained by
popular thinning methods.

dt The euclidean distance transform of the image. It has the squared euclidean distances of
any point of the image to the object.

lbl Label image. This is the discrete Voronoi Diagram of the boundary pixels of the consid-
ered object. Is is a grayscale image indicating the region of influence of each boundary
pixel.

DESCRIPTION
Function skel performs skeletonization (thinning) of a binary object. The resulting medial axis is
multi-scale, meaning that it can be progressively pruned to eliminate detail. This pruning is done
by thresholding the output skeleton image.

The algorithm computes skeletons that are guaranteed to be connected over all scales of simplifi-
cation. The skeletons are computed using the euclidean metric. This has the advantage to produce
high-quality, isotropic and well-centered skeletons in the shape. However the exact algorithm is
computationally intensive.

The radius of the maximal balls associated with the skeleton points are stored in the distance
transform output image.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);
xset(’auto clear’, ’on’);

im=gray imread(’escher.png’);

SIP Toolbox November 2002 1

SKEL(1) SKEL(1)

imshow(im,2);
[skl,dt,vor] = skel(im);

// Fine detail
sklt = (skl >= 5);
imshow(im+sklt,[]);

// Less detail
sklt = (skl >= 20);
imshow(im+sklt,[]);

// The Distance Transform
imshow(sqrt(dt),[]);

// The Influence/Voronoi diagram of each boundary pixel
imshow(vor+1,rand(maxi(vor)+1,3)); // each region maps to a random color

// Let’s see if computation is really fast
big = mogrify(im,[’-sample’,’1000x’]);
size(big)
skl = skel(big);
imshow(big + (skl >= 50),[]);

xset(’auto clear’, ’off’);
chdir(initial dir);

REFERENCES
For the fast euclidean algorithm: "Multiscale Skeletons by Image Foresting Transform and its
Application to Neuromorphometry", A.X. Falcao, L. da F. Costa, B.S. da Cunha, Pattern Recog-
nition, 2002.

For the exact euclidean algorithm:

"Multiresolution shape representation without border shifting", Costa, LF and Estrozi, Electron-
ics Letters, no. 21, vol. 35, pp. 1829-1830, 1999.

"Shape Analysis and Classification", L. da F. Costa and R.M. Cesar Jr., CRC Press.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
thin, reconstruction (not done yet...)

SIP Toolbox November 2002 2

THIN(1) THIN(1)

NAME
thin − thinning by border deletion

SYNOPSIS
out = thin(img)

PARAMETERS
img Binary image containing one or more binary shapes. (foreground == 1, background ==

0),

out Internal skeleton, thinned version of the shapes in the input image.

DESCRIPTION
Function thin performs thinning of binary objects. It uses the Zhang-Suen, a de facto standard
and simple technique. The resulting image, the skeleton, is not always connected and is very sen-
sible to noise. It is also slower than a good skeletonization algorithm (see skel). For thin shapes, it
should work faster and provide better quality. You will need some pruning criterium to eliminate
spurs.

EXAMPLE
im=gray imread(SIPDIR+’images/r.gif’);
imshow(im,2);

skl = thin(im);

xbasc();
imshow(im+skl,[]);

// Quality is definitely inferior to that of good skeletonization
// methods, as in the following test

im=gray imread(SIPDIR+’images/escher.png’);
skl = thin(im); // Ordinary thinning
xbasc();
xset(’wdim’,400,500);
subplot(1,2,1);
imshow(im+skl,[]);
xset(’wdim’,800,400);

skl = skel(im); // multiscale euclidean skeletonization
subplot(1,2,2);
imshow(im+(skl >= 10),[]);
xset(’wdim’,800,400);

REFERENCES
"Practical Computer Vision using C", J. R. Parker, Wiley.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SIP Toolbox MAY 2003 1

THIN(1) THIN(1)

SEE ALSO
skel

SIP Toolbox MAY 2003 2

UNFOLLOW(1) UNFOLLOW(1)

NAME
unfollow − converts a parametric contour into a binary image

SYNOPSIS
Img = unfollow(x,y,dims)

PARAMETERS
x and y

vectors, storing the parametrized contour. They are truncated before calculation.

dims vector [row, column] storing the dimensions of the output Image. This has to be consis-
tent with the size of the resulting contour.

Img binary array, 1 for object and 0 for background (double precision)

DESCRIPTION
Function unfollow plots a contour from its parametric representation into a binary image. This
operation is the reverse of the follow function.

x and y both store the parametrized contour. That is, (x(i),y(i)) is a point of the contour, where
the coordinate system is assumed as starting from bottom-left corner (0,0) to uper-right corner of
the image. To get (x,y) coordinates from (row,col) matrix coordinates, use the transformation
below:

x = col - 1
y = dims(1) - row

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

Img = imread(’star.bmp’);
xset(’window’,0);
xbasc()
imshow(Img,2);
[x,y] = follow(Img);
xbasc()
xsm = gsm(x,15);
ysm = gsm(y,15);
Img2=unfollow(xsm,ysm,size(Img));
xbasc()
imshow(Img2,2);

chdir(initial dir);

BUGS AND SHORTCOMINGS
Images are stored in double precision matrices. Hopefully, the next release will make usage of inte-
ger types.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
follow, bwborder, gsm, curvature

SIP Toolbox January 2002 1

UNWRAPL(1) UNWRAPL(1)

NAME
unwrapl − unwraps phased images linearly

SYNOPSIS
unwrapped phase = unwrapl(image[,threshold,step,direction])

PARAMETERS
unwrapped phase

is a matrix containing the unwrapped phase. Its values are not in 0-1 range, but depend
of the number of phase jumps which were made: You have to normalize it to 0-1 if you
want to visualize it.

image The gray-level image containing the wrapped phase.

threshold
If the difference between the value of two succesive pixels is higher than the threshold, we
consider that there’s a jump of phase in the image. Default=0.5

step Try to be a little noise immune by not allowing another jump in the phase if the distance
from the previous is less than the value of step. Default=0.

direction
"h" to scan the image row by row, "v" to scan columnwise. Default="h"

DESCRIPTION
Phased images are obtained in various interferometry domains. The phase (coded in gray levels)
is represented as the altitude of each pixel. Because the phase is modulo (2*pi or 1 when working
with gray levels), the absolute altitude is not known.

This function unwraps a phased image (gray levels) in the simplest manner: linearly. It works this
way:
1) computes a linear matrix: 1st line is read from left to right, 2nd line is read from right to left,
etc...
2) compares the gradient to a threshold (0.5 is the default): add or substract 1 to ensure phase
continuity.
3) rebuilds a image matrix from the linear matrix
4) step: don’t authorize 2 phase jumps which are too close from one another
5) direction: h (horizontal: default) or v (vertical)
6) jumps is the map containing the number of phase jumps

Very simple and quite fast algorithm. But very noise sensitive. Images to treat should be of excel-
lent quality.

For those not familiar with phase unwrapping, I tried to write a very detailed example.

EXAMPLE
stacksize(1e7); // images are memory-expensive

pw=gray imread(SIPDIR+’images/photonics/pyramide wrapped.jpg’); //phase wrapped

xset("window",0); //create a 1st window to display the original image
xbasc();xselect();imshow(pw);
xtitle("original wrapped phase")

//we try to show the object in 3D:
//because of phase jumps, it’s not very good
xset("window",1);//the best of all: in a 3rd window, show the object in 3D

SIP Toolbox February 2003 1

UNWRAPL(1) UNWRAPL(1)

xbasc();xselect();
//we take 1 point on 4 to draw the object (faster and more beautifull than
//drawing all the points)
plot3d1(1:4:size(pw,’r’),1:4:size(pw,’c’),pw(1:4:$,1:4:$));
xtitle("original wrapped phase in 3D")

//now we unwrap the phase linearly:
//In this example we don’t need any additionnal parameters
//because the image is of good quality.
//be a little patient for this operation
puw=unwrapl(pw);//phase unwrapped

//and we show the result
xset("window",2);//show the unwrapped phase in 2D: we have to put it in the 0-1 range
//to display it properly
xbasc();xselect();imshow(normal(puw));
xtitle("unwrapped phase");

xset("window",3);//we can now show the original object in 3D
xbasc();xselect();
// Again, we take 1 point on 4 to draw the object
plot3d1(1:4:size(puw,’r’),1:4:size(puw,’c’),puw(1:4:$,1:4:$));
xtitle("unwrapped phase in 3D");

REFERENCES
An easy introduction to these problems can be found in
"Methods for 2-D phase unwrapping in Matlab" by Jiri Novak.

A more complete one:
"Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis
algorithms"
by Zebker & Lu (Journal of Optical Society America, vol 15, n3, march 98)

AUTHORS
Jocelyn DRUEL <jocelyn.druel1@libertysurf.fr>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
unwrapp, imvariance, imphase

SIP Toolbox February 2003 2

UNWRAPP(1) UNWRAPP(1)

NAME
unwrapp − unwraps phased images by path following

SYNOPSIS
[unwrapped phase,jumps] = unwrapp(image,merit function, ...

[line start,column start])

PARAMETERS
image The gray-level image containing the wrapped phase.

merit function
The quality of each pixel is estimated: the result is stored in a "merit function" (mf).
Some merit functions can be: laplacien, variance... A good quality pixel has a low merit
function.

line start, column start
The starting point to begin the path: if not entered, the function will search the best
point (=the point with the lowest merit function) in a sqarre around the center of the
image.

DESCRIPTION
For an explanation on phased images, have a look at the help of the function unwrapl.

This function uses an algorithm of "path following" to unwrapp the phase: The idea is to
unwrapp non ambiguous pixels first. Here are some details:
1) the quality of each pixel is estimated by a "merit function". Most often, the "merit function"
will be variance (function "imvariance"), but you could try others functions like laplacien. A
good quality pixel has a low merit function.
2) We begin from a point of good quality. It is called "integrator point".
3) we rely it to its best quality neighbour, which becomes the new "integrator point".
4) If the difference between phases of the 2 points is higher (or lower) than a threshold (=127.5
for 8bit images), then we consider there’s a phase jump.
5) we continue until all points are treated.

How to ignore some points ? You can decide that some points are so unsure that you prefer to
simply ignore them. This can be done by affecting them a merit function >= 3000.

Note about the "jumps" matrix: it is a matrix containing only the number of jumps needed to re-
establish phase continuity: unwrapped phase=image+256*jumps;

EXAMPLE
stacksize(4e7);

pw=imread(SIPDIR+’images/photonics/pyramide wrapped.jpg’); //phase wrapped

mf=imvariance(pw);//calculate a "merit function"
//you could try also: mf=imconv(a,mkfilter(’laplace1’));

// this will take a few minutes
[puw,jumps]=unwrapp(pw,mf);

xset("window",1);xbasc();xselect();imshow(normal(puw,1,0));
xtitle("unwrapped phase");
xset("window",2);xbasc();plot3d1(1:8:size(puw,’r’),1:8:size(puw,’c’),puw(1:8:$,1:8:$))

SIP Toolbox January 2004 1

UNWRAPP(1) UNWRAPP(1)

REFERENCES
David VENET: "techniques automatiques de raccordement de phase" Memoire de l’universite de
Lausanne:

AUTHORS
Jocelyn DRUEL <jocelyn.druel1@libertysurf.fr>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
unwrapl, imvariance, imphase

SIP Toolbox January 2004 2

WATERSHED(1) WATERSHED(1)

NAME
watershed − image segmentation with markers

SYNOPSIS
w = watershed(img [,markers, nhood])

PARAMETERS
img Grayscale image array. Preferably the gradient of the image to segment.

markers
image with the markers (seeds). Each mark must have a unique label from 1 to N, where
N is the number of marks. If ´markers´ is ´-1´ or omitted, then the regional minima of
´im´ will be taken as the markers.

nhood
A scalar. The connectivity to consider in the algorithm. May be 4 or 8, for 4-neighbor-
hood or 8-neighborhood, resp.

w image with the watershed regions (catchment basins), each with a unique number, from 1
to N. The elements labeled 1 belong to the first watershed region, the elements labeled 2
belong to the second basin, and so on. If markers != -1 or is omitted, the regions will have
the same label as the corresponding supplied markers.

DESCRIPTION
Function watershed computes the Watershed transform for image segmentation. This operation
is also known as morphological sup-reconstruction. It is a region-growing algorithm which parti-
tions the image into regions around each marker. Read the references or search the Internet for
more theoretical information.

In the example we show a very useful application of this operator: separation of overlapping
objects.

EXAMPLE
// Suppose we have an image of many round or oval objects, such as a
// microscope image of blood cells. After thresholding the image, we
// end up with a binary image like this:

xset(’auto clear’, ’on’);
a = gray imread(SIPDIR + ’images/disks.bmp’);
imshow(a,2);

//
// We want to make the computer count the number of cells in the image,
// but there are some circles that are overlapping, thus forming a single
// connected component. Watershed is classically used for separating
// mingled objects like these.
//
// First, calculate the distance transform:

a = 1-a;
d = bwdist(a);
d = normal(sqrt(d),255); // normalize it to 0-255 range
imshow(d+1, hotcolormap(256));

//

SIP Toolbox 2003 1

WATERSHED(1) WATERSHED(1)

// The latter command shows the distance transform in shades from
// black to red to yellow to white. The brighter the color, the
// greater the distance of a point to the background.
// If you have the ENRICO toolbox, you can nicely plot the distance
// transform in 3D using sadesurf. ENRICO is not necessary for this
// example, but anyway you may download it at:
// http://www.weizmann.ac.il/˜fesegre/scistuff.html
//
// Note that the peaks of the distance transform are in the middle of
// each blob. The idea is to run watershed segmentation using these
// peaks as markers. For this, we invert the distance transform so
// that the peaks become the regional minima:

d = 255 - d;
imshow(d+1, hotcolormap(256));

// Now we "and" the distance transform with the original image, so
// that the background remains dark.

d = d .* a;
imshow(d+1,hotcolormap(256));

// Finally, run watershed segmentation. It automatically detects the
// regional minima for us:

w = watershed(d);
imshow(w, rand(256,3));

// ’w’ is an image with a unique number for each watershed region.
// The imshow with a random colormap displays each region with a
// unique arbitrary color. Note how the regions were correctly separated by
// watershed, except for the hardest cases. It is extremely easy to
// count the number of regions:

n = maxi(w) - 1 // 26 regions minus the background

// The computer found 25 regions, but there are 20, an error of about 20%
// Let’s improve this result. In the cases with many overlapping
// circles, the result would be perfect if it weren’t for the small
// spurious regions. These are much smaller than the circles,
// so we can safely eliminate the regions with less than 100 pixels:

w2 = w;
for i=1:n

f = find(w==i); // coordinates of i-th region
if size(f,’*’) < 100

w2(f) = 26; // merge small regions with the background
end

end

imshow(w2, rand(256,3)); // note how the small regions are gone

// Now we count again, using a different way:

SIP Toolbox 2003 2

WATERSHED(1) WATERSHED(1)

n = size(unique(w2), ’*’) - 1 // subtract 1 for the background

// Now it’s 100% correct! We have an authomatic method wich is surprisingly
// robust. This is specially useful to deal with bigger images in large
// ammount.
//
// Enjoy!
//
// TIP #1: Another way to improve the results is to do a median
// filtering of the distance transform. This will remove many spurious
// minima. Use mogrify(img, [’-median’, ’2’]). Slight Gaussian smoothing also
// works well.
//
// TIP #2: for grayscale image segmentation, calculate the image
// gradient before watershed. Use edge(img,’sobel’,-1) for this.
//
// TIP #3: use xgetpixel in a for loop (or something similar) to select
// the seed pixels to be used with watershed segmentation.

xset(’auto clear’, ’off’);

REFERENCES
This is the algorithm we used:
"The Image Foresting Tranform: Theory, Algorithms, and Applications" A.X. Falcao, R.A.
Lotufo, and J.Stolfi, IEEE T. Pattern Analysis and Machine Intelligence, (accepted for publica-
tion).
The IFT home page and the GIFT free software: http://www.ic.unicamp.br/˜afalcao/ift.html
The original algorithm certainly that of Vincent & Soille, although it differs from the one we used
in SIP/Animal:

"Watersheds in digital spaces: an efficient algorithm based on immersion simulations." IEEE T.
Pattern Analysis and Machine Intelligence, 1991.

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
edge, bwdist, xgetpixel, mogrify (-segment option), im2bw, skel

SIP Toolbox 2003 3

XGETPIXEL(1) XGETPIXEL(1)

NAME
xgetpixel − gets the pixel coordinates from an image

SYNOPSIS
p = xgetpixel(arg [,winno])

PARAMETERS
arg the number of rows in the considered image, or the image itself, depending on what’s

more convenient to the user.

winno the number of the scilab graphical window. Defaults to the current active window.

p the (row,col) coordinate of the pixel that have been clicked on the image.

DESCRIPTION
Function xgetpixel interactively shows the (row,col) position of the mouse cursor over an image
ploted into scilab graphic.

EXAMPLE
initial dir = PWD;
chdir (SIPDIR + ’images’);

[im,map] = imread(’example.bmp’);
xbasc()
imshow(im,map);

p = xgetpixel(im)

chdir(initial dir);

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
xgetmouse, xclick, locate

SIP Toolbox September 2002 1

XOR(1) XOR(1)

NAME
xor − exclusive or

SYNOPSIS
C = xor(A,B)

Input A, B: input arrays

Output
C: resulting boolean array

DESCRIPTION
"xor" is a simple convenience function to calculate the exclusive OR logical operator on the corre-
sponding elements of the input arrays. The resulting element is %f if either the corresponding ele-
ments in A or in B are nonzero, but not both.

EXAMPLE
A = [0 0 %pi %eps] B = [0 -6.9 0 1]

C = xor(A,B) C = | F T T F |

AUTHORS
Ricardo Fabbri <rfabbri@if.sc.usp.br>

AVAILABILITY
The latest version of the Scilab Image Processing toolbox can be found at

http://siptoolbox.sourceforge.net

SEE ALSO
and, or

SIP Toolbox SEPTEMBER 2004 1

